Эти рассуждения ошибочны, поскольку не учитывают, что реальное число фотонов в импульсах, проходящих через ослабитель, будет стохастическим в соответствии с распределением Пуассона (см. разд. Б.3). Хотя в среднем, возможно, действительно получится один фотон на импульс, это не означает, что каждый импульс будет содержать ровно один фотон. Иногда фотонов в импульсе вообще не окажется, иногда там будет один фотон, иногда два или больше.
Несмотря на это возражение, в некоторых случаях ослабленный лазер служит полезной заменой настоящего источника фотонов. В частности, в практической квантовой криптографии лазер ослабляется до чрезвычайно низкого уровня, так чтобы вероятность того, что каждый импульс содержит хотя бы один фотон, стала весьма малой. Тогда вероятность содержания в импульсе более одного фотона пренебрежимо мала, и безопасность связи не страдает.
Чтобы гарантировать генерацию единичного фотона «по требованию», нужны более хитроумные схемы. Например, единичный двухуровневый атом, будучи возбужденным, автоматически вернется в основное состояние, излучив при этом ровно один фотон. Практическая реализация такого источника, однако, представляет серьезные трудности. Во-первых, необходимо поймать единичный атом и неподвижно удерживать его в ходе всего эксперимента. Во-вторых, фотон будет излучен в случайном направлении. Чтобы заставить атом излучать в каком-то конкретном направлении, физики иногда окружают его резонатором Фабри — Перо. Этот метод развился в целое научное направление, называемое квантовой электродинамикой в резонаторе.
Чтобы обойти необходимость в захвате атома, эксперименты проводят с твердотельными атомоподобными источниками, такими как единичные дефекты кристаллической решетки или квантовые точки. Идея та же: взять объект, в котором возможен только один квант возбуждения с определенной энергией. Пока я пишу эту книгу, подобные эксперименты стремительно развиваются в сторону большей эффективности и лучшей воспроизводимости получаемых фотонов.
Многие физики используют мощный альтернативный подход к приготовлению единичных фотонов — спонтанное параметрическое рассеяние (spontaneous parametric down-conversion). Это нелинейный квантово-оптический процесс, который происходит, когда сильный лазерный луч проходит сквозь кристалл с нелинейными оптическими свойствами. Каждый фотон луча может при этом спонтанно расщепиться на два менее энергичных фотона. Данное событие имеет очень низкую вероятность. Однако у него есть фундаментальное свойство: в нем каждый раз рождается именно пара фотонов. Так что если мы зарегистрируем один из этих фотонов, то будем знать наверняка, что появилась также и его копия, — и можем с ней экспериментировать.
Такое устройство называется источником объявленных одиночных фотонов (heralded single photon source), потому что обнаружение одного фотона «объявляет» о присутствии второго. Этот источник не способен производить фотоны «по требованию»; он только сигнализирует о появлении спонтанно испущенного фотона, не разрушая его. Поэтому его применение в квантовых технологиях ограничено. Однако, поскольку у нас пока нет надежного способа приготовления единичных фотонов по заказу, источники объявленных фотонов широко используются в экспериментальных квантово-оптических исследованиях.
Упражнение 1.26.Операторы Паули[29] определяются как
или в матричной записи
Предложите реализацию этих операторов средствами волновых пластинок.
Подсказка: найдите состояния, на которые операторы Паули отображают |H⟩ и |V⟩, затем используйте упр. 1.24.
Упражнение 1.27. Матрица оператора Адамара Ĥ в каноническом базисе равна:
a) Выразите этот оператор в нотации Дирака.
b) На какие состояния Ĥ отображает |H⟩ и |V⟩?
c) Как можно реализовать этот оператор с помощью волновых пластинок?
29
Значение индексов