Поскольку энергетические собственные состояния физически не меняются, их называют стационарными. Еще один пример стационарных состояний — атом в рамках модели Бора. Согласно этой модели, если электрон находится на «орбитали», соответствующей определенной величине энергии, то он может оставаться на ней в течение долгого времени.
Уравнение (1.28) можно использовать для вычисления эволюции квантового состояния непосредственно. Однако иногда практичнее бывает представить эволюцию в более компактном виде оператора эволюции, отображающего любое начальное состояние на его изменившийся вариант:
Получим оператор эволюции в явном виде.
Упражнение 1.44. Пользуясь уравнениями (1.27) и (1.28):
a) получите матрицу оператора эволюции в собственном базисе гамильтониана;
b) покажите, что[34] (1.30)
Убедитесь, что этот оператор является унитарным.
Унитарность оператора эволюции неудивительна. Данный оператор должен отображать одно физическое состояние на другое физическое состояние, а это означает, что он должен сохранять норму.
Упражнение 1.45§. Убедитесь, что операторы преобразования (1.5), задаваемые волновыми пластинками, унитарные.
Как мы знаем (упр. A.82), все унитарные операторы обратимы и оператор, обратный унитарному, также является унитарным. У этого есть одно глубокое следствие. Если мы знаем оператор эволюции и состояние, которое является результатом этой эволюции, то мы можем воспроизвести начальное состояние, применив оператор, обратный оператору эволюции, к конечному состоянию.
Уравнение (1.30) показывает нам в явном виде, как применять эту инверсию. Замена Ĥ на — Ĥ в (1.30) эквивалентна замене t на — t, т. е. она обращает эволюцию вспять во времени, в конечном итоге приводя систему к ее начальному состоянию. Это явление, известное как обратимость времени (time reversibility) в квантовой механике, имеет множество интересных приложений, например спиновое эхо (подразд. 4.7.4).
В ходе эволюции замкнутой квантовой системы никогда не теряется никакая информация. На языке статистической физики это означает, что энтропия физической системы не увеличивается в ходе ее эволюции.
Упражнение 1.46. Для любого состояния |ψ(t)⟩ покажите, что
Уравнение (1.31) называется уравнением Шрёдингера. Это еще один способ описать закон эволюции квантовой системы, причем исторически этот способ был первым.
Наша следующая задача — попрактиковаться в нахождении временнóй эволюции квантовых состояний. Физическая система, которую мы использовали до сих пор, — поляризация фотона — не слишком подходит для этой цели, поскольку энергия фотона равна ℏω вне зависимости от его поляризации. Однако для тренировки (пока мы не познакомимся с другими физическими системами с невырожденным энергетическим спектром) будем предполагать, что при определенных условиях энергия фотона может стать зависимой от поляризации, и посмотрим, как меняется эта поляризация.
Предположим, нам дано начальное состояние |(0)⟩ системы и ее гамильтониан Ĥ и нужно предсказать состояние этой системы |ψ(t)⟩ в произвольный момент времени. Для этой цели мы можем воспользоваться тремя методами:
I. Разложить |ψ(0)⟩ в энергетический собственный базис в соответствии с уравнением (1.27), а затем применять простое уравнение эволюции (1.28) к каждому элементу базиса, чтобы найти |ψ(t)⟩.
II. Вычислить оператор эволюции из (1.30) с помощью приемов, освоенных в разд. A.11, а затем применить этот оператор к начальному состоянию в соответствии с (1.29).
III. Решить задачу Коши, состоящую из дифференциального уравнения Шрёдингера (1.31) и начального состояния |ψ (0)⟩. В этом подходе уравнение Шрёдингера можно записать в матричной форме
и решить как систему из двух дифференциальных уравнений для пары функций (ψH(t), ψV(t)).
Упражнение 1.47. Напишите уравнение Шрёдингера для следующих гамильтонианов:
Для каждого случая найдите состояние поляризации фотона в момент t, если его начальное состояние равно либо |ψ(0)⟩ = |H⟩, либо |ψ(0)⟩ = |±45º⟩, с использованием каждого из трех перечисленных выше методов. Выразите ответ в каноническом базисе.