Упражнение 1.48. Найдите величины t в упр. 1.47, для которых действие оператора эволюции эквивалентно действию полуволновой и четвертьволновой пластинок на угле 0º для части (a) и 45º для части (b) соответственно.
Мы видим, что эволюция фотонов, исследованная в упр. 1.47, эквивалентна тому, что происходит в двулучепреломляющих материалах. Однако физика происходящего не совсем аналогична. В двулучепреломляющих материалах собственные состояния оператора эволюции накапливают разные фазы из-за разных коэффициентов преломления для обыкновенной и необыкновенной поляризации (приложение В). В эволюции же гамильтониана сдвиг фазы объясняется разными энергиями энергетических собственных состояний.
1.11. Задачи
Задача 1.1. Найдите коммутатор
Задача 1.2. Два состояния раскладываются в круговом базисе в соответствии с
a) Покажите, что эти состояния образуют ортонормальный базис.
b) Найдите разложения этих состояний в каноническом базисе с использованием двух методов:
• выразив |R⟩ и |L⟩ в каноническом базисе и подставив в (1.33);
• найдя матричные формы состояний |ψ⟩, |ϕ⟩, |H⟩ и |V⟩ в круговом базисе и использовав скалярное произведение.
c) Убедитесь, что состояния |ψ⟩ и |ϕ⟩ образуют ортонормальное множество, воспользовавшись скалярным произведением в каноническом базисе.
d) Разложите состояния |H⟩, |V⟩, |R⟩, |L⟩, в базисе {|ψ⟩, |ϕ⟩}. Напишите ответ как в нотации Дирака, так и в матричной нотации.
e) Состояния |H⟩, |V⟩, |R⟩, |L⟩, измерены в базисе {|ψ⟩, |ϕ⟩}. Каковы вероятности результатов?
Задача 1.3. Повторите упр. 1.12 для фотона, который находится в случайном статистически смешанном состоянии, описываемом следующим ансамблем:
a) либо |+⟩ с вероятностью 1/2, либо |—⟩ с вероятностью 1/2;
b) либо |R⟩ с вероятностью 1/2, либо |L⟩ с вероятностью 1/2.
Задача 1.4. Рассмотрите модифицированный протокол BB84, в котором Алиса посылает, а Боб анализирует фотон в поляризационном базисе, выбранном случайно, с равной вероятностью для каждого варианта из следующих трех: (0º, 90º), (30º, 120º), (60º, 150º). Найдите долю битовых ошибок, которые увидят Алиса и Боб в случае прямолинейной атаки, в которой Ева перехватывает фотон, измеряет его в одном из трех приведенных выше базисов (выбранном случайно и равновероятно) и отправляет Бобу то, что измерила. Потерь в линии нет, все оборудование идеально.
Задача 1.5. Рассмотрим оператор Â, выполняющий следующее преобразование:
a) Как состояние вертикальной поляризации преобразуется оператором Â?[35]
b) Напишите матрицу Â в каноническом базисе.
c) Выразите Â в нотации Дирака через внешнее произведение состояний |H⟩ и |V⟩.
d) Используя тот факт, что для любого линейного оператора  (λ|a⟩ + µ|b⟩) = λÂ|a⟩ + µ  |b⟩, определите, как  действует на состояния с круговой поляризацией.
e) Пользуясь предыдущим результатом, найдите матрицу Â в базисе круговой поляризации.
f) Найдите матрицу Â в каноническом базисе по его матрице в круговом базисе при помощи разложения (А.26) единичного оператора. Согласуется ли ваш результат с результатом пункта b)?
g) Является ли Â эрмитовым? Если нет, то каков оператор, сопряженный с ним?
Задача 1.6. Выполните упр. 1.24 с использованием альтернативного метода.
a) Напишите матрицу оператора волновой пластинки в базисе {|α⟩, |90º + α⟩}
b) Переведите эту матрицу в канонический базис при помощи разложения (A.26) единичного оператора.
Задача 1.7. Используя уравнение (1.5), покажите, что , т. е. две четвертьволновые пластинки с параллельными оптическими осями, сложенные вместе, составляют одну полуволновую пластинку.
Задача 1.8. Используя перемножение матриц, покажите, что четвертьволновая пластинка, ориентированная под любым углом, при применении к состоянию круговой поляризации дает состояние линейной поляризации.
35
В данном случае общая фаза в правой части уравнения (1.35) имеет значение. Дело в том, что нас интересует не только преобразование самого состояния |+⟩, но и вся линейная операция, определенная этим преобразованием. Чтобы увидеть действие этой общей фазы, вы можете попытаться решить часть a), заменив (1.35) на |+⟩ → |+⟩.