Выбрать главу

Фотонная поляризация оказывается полезной и позже, когда мы переходим к изучению запутанности. Огромное количество экспериментов по проверке принципиальных моментов в квантовой информатике было проделано с использованием именно данного объекта в качестве носителя квантового бита. Некоторые из этих экспериментов — в частности, по квантовой криптографии, телепортации и нелокальности — относятся непосредственно к концепциям, описанным в книге. Иллюстрируя теоретический материал данными экспериментов из актуальнейших на сегодняшний день исследовательских тем, эта книга сразу, с самого начала, вводит студентов в самое сердце квантовой физики. А что может придать изучению академической дисциплины больший интерес, чем свежие результаты из исследовательских лабораторий?

Раз уж мы заговорили о лабораториях, замечу, что опыт студентов не должен ограничиваться чтением материалов об экспериментах, проведенных кем-то другим. Огромное преимущество поляризационного кубита как иллюстрирующей системы состоит в том, что он позволяет усилить курс лабораторным компонентом. Почти весь материал главы 1 иллюстрируется классическим экспериментом с поляризацией, для которого требуются лазер, несколько поляризационных пластинок, поляризующий светоделитель и два детектора. Материал по запутанности можно подать наглядно при помощи серии лабораторных работ по удаленному приготовлению состояния, однофотонной интерференции и нелокальности Белла. Организовать такие эксперименты силами среднестатистической кафедры физики сложнее, но вполне по силам, о чем свидетельствует опыт множества колледжей по всему миру, в том числе и моего родного Университета Калгари. Дополнительные подробности на предмет возможных образовательных лабораторных работ можно найти на сайте книги.

Связь между квантовой физикой и квантовой оптикой в этой книге не ограничена использованием фотона для иллюстрации основных концепций соответствующей дисциплины. Она проявляется также в многочисленных примерах из оптики, обильно рассыпанных по всей книге, и в выборе предметов для более углубленного изучения (подробное описание гармонического осциллятора, представления Гейзенберга, сжатия, матриц плотности, двухуровневых систем, квантовой томографии). Эти предметы будут особенно полезны тем, кто интересуется квантовой информатикой в целом и квантовой оптикой в частности.

Структура курса

Книга содержит материал, который можно преподать студентам в рамках двухсеместрового курса квантовой механики. В главе 1 вводятся главные принципы и постулаты КМ, которые иллюстрируются кубитом поляризации фотона. Читатель, возможно, захочет изучать эту главу параллельно с приложением A, в котором разобраны основы линейной алгебры, необходимые в КМ, как показано в таблице ниже.

Глава 2 целиком посвящена запутанности, ее следствиям и приложениям. Сначала я ввожу пространство тензорных произведений математически, затем рассказываю о частичных квантовых измерениях, удаленном приготовлении состояния и парадоксе нелокальности (в формах Белла и Гринбергера — Хорна — Цайлингера), иллюстрируя теорию экспериментами с запутанными фотонами. Нелокальность, пожалуй, главный парадокс квантовой механики, и после него естественно обсудить механизм квантовых измерений, их естественный аналог (декогеренцию) и интерпретации квантовой механики. В разд. 2.4 мы выясняем, когда и почему квантовая система становится классической в ходе измерения и почему мы не встречаем гуляющих по городу кошек Шрёдингера. После этого я весьма подробно рассматриваю приложения запутанности, такие как квантовые вычисления, телепортация и повторители. При преподавании этого материала имеет смысл предложить двум или трем студентам сделать презентации по свежим исследованиям в данной области.