Предположим, начальное состояние
где {|𝑣i⟩} — ортонормальный базис, в котором Алиса будет проводить свое измерение, а {|ωj⟩} — некоторый ортонормальный базис в гильбертовом пространстве Боба. Перепишем это в виде:
где есть вектор в гильбертовом пространстве Боба и
есть нормирующий множитель, такой что ║|bi⟩║ = 1 для любого i (в сумме (2.15) мы опускаем слагаемые с так что все 𝓝i конечны).
Таким образом, мы выразили состояние, которое предстоит измерить, в виде суммы ортогональных компонентов |𝑣i⟩ ⊗ |bi⟩. Амплитуды этих компонентов равны 1/𝓝i, так что вероятность, с которой Алиса увидит соответствующий |𝑣i⟩, равна prA,i = 1/𝓝i2. Всякий раз, когда это происходит, система Боба принимает соответствующее состояние |bi⟩.
Упражнение 2.29. Для физического состояния |Ψ⟩ покажите, что в (2.15)
Упражнение 2.30. Для состояния |Ψ⟩ = 𝓝 (|RV⟩ + |H+⟩):
a) найдите множитель 𝓝 такой, при котором |Ψ⟩ нормировано;
b) представьте это состояние в виде (2.15), где {|𝑣i⟩} — канонический базис;
c) найдите вероятности возможных результатов при проведении Алисой локального измерения в каноническом базисе и напишите удаленно приготовленное состояние фотона Боба для каждого из результатов Алисы.
Мы разработали метод предсказания результатов локальных измерений на запутанном состоянии. Этот метод функционален, но несколько неуклюж, так что мы сейчас введем понятие, которое позволит нам существенно упростить процедуру.
Частичное скалярное произведение (partial inner/scalar product) локального состояния |a⟩ в гильбертовом пространстве 𝕍A и двусоставного состояния в гильбертовом пространстве 𝕍A ⊗ 𝕍B (где {|𝑣i⟩} и {|ωj⟩} — ортонормальные базисы в 𝕍A и 𝕍B соответственно) есть состояние в гильбертовом пространстве 𝕍B, заданное
Определение для частичного скалярного произведения |Ψ⟩ и локального состояния в пространстве 𝕍B дается аналогично.
Упражнение 2.31. Для |ψ⟩ = 2 |H⟩ + i|𝕍⟩ найдите B⟨ψ|Ω⟩ и ⟨Π|ψ⟩A, где |Ω⟩ = 2 |HH⟩ + 3 |H𝕍⟩ + 4 |𝕍H⟩, |Π⟩ = (2 |H⟩ + i|𝕍⟩) ⊗ (i|H⟩ — |𝕍⟩), а индексы A и B на состоянии |ψ⟩ указывают, что оно локализовано в пространстве Алисы или Боба соответственно.
Упражнение 2.32. Покажите, что для любого разделимого состояния |ab⟩ ∈ 𝕍A ⊗ 𝕍B и любого состояния |a'⟩ ∈ 𝕍A
⟨a' | ab⟩ = ⟨a' | a⟩ |b⟩. (2.18)
Упражнение 2.33. Предположим, что |Ψ⟩ — состояние в пространстве тензорных произведений, а |a⟩ и |b⟩ — состояния в пространствах Алисы и Боба соответственно. Покажите, что
⟨a | (⟨b|Ψ⟩) = ⟨b | (⟨a|Ψ⟩) = ⟨ab|Ψ⟩. (2.19)
Упражнение 2.34. Покажите, что для любых двух ортонормальных базисов {|𝑣i⟩} ⊗ {|ωj⟩} и {|v'i⟩} ⊗ {|ω'j⟩} в 𝕍A ⊗ 𝕍B локального состояния |a⟩ ∈ 𝕍A и двусоставного состояния
частичное скалярное произведение ⟨a| Ψ⟩ не зависит от выбора базиса, т. е.
Упражнение 2.35. Покажите, что в уравнении (2.15):
a) |bi⟩ = 𝓝i ⟨𝑣i|Ψ⟩;
b) ║ ⟨𝑣i|Ψ⟩ ║ = 1/𝓝i.
Последнее упражнение предлагает прямолинейный способ вычислить разложение (2.15) для заданного состояния и базиса измерения Алисы и, следовательно, вычислить также результаты локальных измерений. И в самом деле, частичное скалярное произведение дает не только состояние |bi⟩, которое будет приготовлено удаленно в локации Боба, но и вероятность каждого результата на стороне Алисы.
Мы можем рассматривать этот результат как обобщение постулата квантовой физики об измерениях на локальные измерения. Резюмируем его. Локальное измерение Алисы на двусоставном состоянии |Ψ⟩ в базисе {|𝑣i⟩} вызовет коллапс |Ψ⟩ на одно из случайно выбранных состояний 𝓝i |𝑣i⟩ ⊗ ⟨𝑣i|Ψ⟩ с вероятностью