Выбрать главу

prA,i = ⟨Ψ|𝑣i⟩ ⟨𝑣i|Ψ⟩. (2.22)

Это можно переформулировать на языке проекционных операторов (разд. 1.8): измерение Алисы превращает состояние |Ψ⟩ в множество ненормированных состояний а квадрат нормы каждого состояния в этом множестве есть вероятность соответствующего результата.

После локального измерения запутанное двусоставное состояние коллапсирует в разделимое состояние. Если Алиса разрушит в процессе измерения свою систему, то результирующее состояние 𝓝i ⟨𝑣i|Ψ⟩ будет локализовано у Боба.

Упражнение 2.36. Выполните упр. 2.30 c) с использованием частичных скалярных произведений.

Упражнение 2.37. Для каждого белловского состояния покажите, что локальное измерение Алисы в любом ортонормальном базисе выдаст тот или иной результат с вероятностью 1/2.

Упражнение 2.38§. Предположим, Алиса измеряет

в базисе круговой поляризации. На какое состояние проецируется фотон Боба для каждого из результатов Алисы?

Упражнение 2.39. Предположим, что Алиса и Боб располагают состоянием |Ψ⟩. Алиса хочет удаленно приготовить в локации Боба некоторую линейную суперпозицию α|H⟩ + β|V⟩, где α и β произвольны, но |α|2 + |β|2 = 1 (т. е. результирующее состояние нормировано). В каком базисе ей следует измерять? Какова вероятность успеха?

2.2.3. Локальные измерения и причинность

Вернемся теперь к нашему недавнему обсуждению того, противоречит ли эффект удаленного приготовления принципу причинности. Тот факт, что измерение Алисы влияет на состояние фотона Боба, сам по себе не содержит такого противоречия, ибо квантовое состояние — понятие вполне абстрактное. Вопрос, которым нам следует задаться, звучит так: изменятся ли физические свойства фотона Боба — т. е. его поведение при измерениях — после измерения Алисы?

Налицо искушение дать положительный ответ. И в самом деле, до измерения состояние Боба было частью полностью изотропного двусоставного состояния; после измерения это уже состояние с определенным углом поляризации — т. е. с кардинально другими физическими свойствами.

Однако при таком ответе упускается один важный момент. Локальное измерение Алисы не всегда приготавливает одно и то же состояние в локации Боба: иногда это |θ⟩, а иногда |π/2 + θ⟩. Чтобы узнать, какое именно возникло состояние, Бобу нужно принять от Алисы классическое сообщение о результате, полученном ею при измерении. До этого момента Боб знает лишь, что у него имеется одно из двух возможных состояний — и благодаря этой неопределенности измеряемые свойства фотона Боба остаются полностью идентичными тем, что были до измерения. Прежде чем доказать это утверждение строго, рассмотрим пример.

Упражнение 2.40. В условиях упр. 2.27 Боб измеряет поляризацию своего фотона в каноническом базисе после измерения Алисы. Какова вероятность каждого результата при условии, что Боб не знает результата измерения Алисы?

Ответ: prБоб,H = prБоб,V = 1/2 независимо от базиса, который использовала Алиса.

Упражнение 2.41. Алиса и Боб выполняют измерения на своих частях двусоставного состояния |Ψ⟩ в базисах {|𝑣i⟩} и {|ωj⟩} соответственно. Эти измерения могут проходить по трем альтернативным сценариям:

1. Алиса и Боб выполняют свои измерения одновременно, так что к проективному измерению состояния |Ψ⟩ в базисе {|𝑣i⟩ ⊗ |ωj⟩} применим оригинальный постулат об измерениях.

2. Алиса выполняет свое измерение первой, а затем Боб измеряет удаленно приготовленное состояние.

3. Боб выполняет свое измерение первым, а затем Алиса измеряет удаленно приготовленное состояние.

Покажите, что вероятность ситуации, в которой Алиса обнаружит |𝑣i⟩, а Боб — |ωj⟩, одинакова для каждого из этих сценариев: prij = |⟨𝑣iωj | Ψ⟩|2.

Упражнение 2.42. Проверьте утверждение из предыдущего упражнения на примере состояния |Ψ⟩ из упр. 2.30 и измерений, проведенных обеими сторонами в канонических базисах:

a) Найдите вероятности prHH, prHV, prVH и prVV для случая, когда Алиса и Боб производят свои измерения одновременно.