Выбрать главу

Это самое большее из того, что возможно. Предполагая, что Алиса могла проводить измерения в других базисах, мы можем описать фотон Боба как «либо |+45º⟩ с вероятностью 1/2, либо |–45º⟩ с вероятностью 1/2» (упр. 2.9) или «либо |R⟩ с вероятностью 1/2, либо |L⟩ с вероятностью 1/2» (упр. 2.38) и т. д. Все эти описания эквивалентны (упр. 1.12). Поляризация фотона Боба полностью смешанная — аналогично поляризации естественного света. Его состояние не представлено в гильбертовом пространстве никаким определенным вектором.

В главе 5 мы будем изучать свойства смешанных состояний и способы их математического описания. Пока же важно понять, что если мы теряем часть запутанного состояния, то оставшаяся часть теряет когерентность: она уже не находится в состоянии суперпозиции, а представляет собой просто статистическую смесь. В этом случае она описывается на языке классической теории вероятностей, а не квантовой механики.

Замечу, что мы уже говорили о потере квантовой когерентности в контексте измерений Welcher Weg в эксперименте с квантовой интерференцией (разд. 1.5). Более того, это явление той же природы, что и те, которые мы изучаем сейчас, как мы увидим в разд. 2.4.

Упражнение 2.45. Алиса и Боб имеют общее запутанное двухфотонное состояние:

Опишите в виде ансамбля состояние фотона Боба, считая, что Алиса измеряет поляризацию своего фотона (1) в каноническом и (2) в диагональном базисе, но не сообщает Бобу результат измерения.

В каждой части этого упражнения ансамбль, описывающий смешанное состояние Боба, зависит от базиса, в котором Алиса проводит свое измерение. Но подчеркну еще раз: эти разные ансамбли соответствуют одному и тому же набору вероятностей в случае, если Боб будет проводить измерение на своей части состояния. Если бы дело обстояло не так, Боб мог бы строить выводы о действиях Алисы — а это, как мы выяснили в подразд. 2.2.3, невозможно[44].

2.3. Квантовая нелокальность

2.3.1. Парадокс Эйнштейна — Подольского — Розена

В разд. 2.2 мы говорили о локальных измерениях на запутанных состояниях. Мы обнаружили, что локальное измерение Алисы вызывает мгновенный коллапс нелокального состояния в некое состояние, которое находится в локации Боба и зависит от измерения, которое Алиса решает выполнить. Мы показали, что удаленное приготовление состояния не нарушает причинности, т. е. что на измеряемые свойства фотона Боба измерение Алисы никак не влияет. Затем мы порассуждали о том, что квантовое состояние — это чисто теоретический конструкт, так что ему «разрешается» демонстрировать нефизичные на первый взгляд свойства на бумаге при условии, что это не влечет за собой никаких реальных следствий в эксперименте. Проблема, однако, все же не решена до конца: если в теоретической модели присутствуют абсурдные, контринтуитивные элементы, не имеющие отношения к измеряемой физике, то, может быть, эта модель не так уж хороша!

Этот парадокс был впервые строго сформулирован в 1935 г. в статье Альберта Эйнштейна, Бориса Подольского и Натана Розена (ЭПР)[45]. Первоначально парадокс ЭПР был предложен для механического движения пары частиц, так что нам придется отложить его обсуждение до главы 3. Здесь же мы поговорим о его альтернативной формулировке, подобной той, что была предложена Дэвидом Бомом в 1951 г.[46]

Рассуждение ЭПР опирается на понятие физической реальности. Наблюдаемое определяется как элемент физической реальности, когда результат его измерения может быть верно предсказан еще до измерения. Предположим, например, что Алиса и Боб (две удаленные не взаимодействующие между собой стороны) располагают запутанным состоянием двух фотонов. Пусть Алиса измеряет поляризацию своего фотона в каноническом базисе. Это измерение удаленно приготовит у Боба состояние |H⟩ или |V⟩. Если теперь Боб посчитает нужным измерить свой фотон в каноническом базисе, результат его измерения может быть предсказан точно, а это означает, что наблюдаемое — элемент физической реальности фотона Боба.

Если бы Алиса вместо этого измеряла в диагональном базисе, фотон Боба удаленно приготовился бы либо в |+45º⟩, либо в |–45º⟩. И затем, если бы Боб решил измерить свой фотон в диагональном базисе, результат его измерения можно было бы предсказать точно — так что в данном случае физической реальности фотона Боба соответствует наблюдаемое

вернуться

44

Тот факт, что ансамбли Боба, полученные для двух измерительных базисов Алисы, идентичны, мы покажем строго в упр. 5.40.

вернуться

45

A. Einstein, B. Podolsky, N. Rosen, Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Physical Review 47, 777 (1935).

вернуться

46

D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, 1951.