Выбрать главу

Отступление 2.3. Экспериментальные проверки неравенства Белла

Первые тесты по проверке неравенства Белла провели Джон Клаузер со своими сотрудниками[50] (1972) и, в более полном виде, Ален Аспе с коллегами[51] (1981–1982). В то время параметрическое рассеяние понимали еще недостаточно хорошо, поэтому для приготовления необходимых запутанных состояний использовали ансамбли атомов.

Прореху локальности закрыла группа Антона Цайлингера[52] (1998). Алису и Боба разделили дистанцией 400 м, а для выбора базисов измерения были использованы квантовые генераторы случайных чисел.

Прореху обнаружения первой закрыла группа Дэвида Уайнленда[53] (2001), но использовала она для этого не фотоны, а кубиты, построенные на ионах бериллия в магнитной ловушке. Захваченные ионы могут оставаться в ловушке очень долго, а их квантовые состояния при этом можно измерять с высокой эффективностью. Однако два иона, на которых проводился данный эксперимент, находились в одной ловушке на расстоянии всего лишь нескольких микрометров друг от друга. Отсюда следует, что на результат эксперимента могла серьезно повлиять прореха локальности.

В 2015 г. на протяжении трех месяцев было опубликовано сразу три статьи с отчетами об экспериментах, в которых закрывались одновременно обе прорехи. В первом из них экспериментаторы под руководством Рональда Хансона[54] сумели обойти прореху обнаружения путем использования обмена запутанностью (упр. 2.69) для запутывания долгоживущих состояний спина электронов двух азотозамещенных вакансий в кристаллах алмаза, разделенных расстоянием 1,3 км. В двух других экспериментах — под руководством А. Цайлингера[55] и Линдена Шалма[56] соответственно — для уменьшения связанных с распространением и обнаружением фотонов потерь ниже порогового значения, необходимого для нарушения неравенства Белла, использовались хитроумные установки параметрического рассеяния и высокоэффективные детекторы.

Прореха обнаружения (detection loophole) возникает из-за оптических потерь или неэффективной работы детекторов. Результатом этих неидеальностей становится ненулевая вероятность того, что в локации Алисы или Боба ни один из двух детекторов не обнаружит фотона. В таком случае величина на экране соответствующей стороны останется неопределенной — а это означает, что передняя панель эксперимента уже не будет соответствовать рис. 2.2[57]. Во многих экспериментах данный вопрос решается введением так называемой гипотезы о представительности выборки, гласящей, что потери возникают случайно и на них не влияют локальные скрытые переменные. Действуя в рамках этой гипотезы, экспериментаторы вычисляют ⟨S⟩, принимая во внимание только те события, в которых фотон зарегистрировали и Алиса, и Боб. Хотя гипотеза о представительности выборки и естественна в контексте установки на рис. 2.1, она несовместима с общей идеологией теоремы Белла, которая не допускает в принципе никаких гипотез о физике эксперимента.

Упражнение 2.50§. Для квантовой оптической установки, которая обсуждалась в этом разделе, покажите, что Алиса и Боб, рассматриваемые по отдельности, будут наблюдать результаты +1 и –1 с равной вероятностью, какие бы кнопки они ни нажимали.

Подсказка: загляните в упр. 2.37.

Упражнение 2.51*. Предположим, что эффективность каждого детектора фотонов составляет 50 %. Остальная часть установки идеальна, так что в рамках гипотезы о представительности выборки Предложите локальную реалистичную модель для частиц и детекторов, которая воспроизводила бы такое поведение.

Упражнение 2.52. Чтобы провести эксперимент Белла с неидеальными детекторами, электронные схемы в устройствах Алисы и Боба запрограммированы так, что в тех случаях, когда ни один детектор фотонов не щелкнул, устройство показывает на экране случайным образом +1 или –1. Предполагая, что остальная часть установки идеальна, найдите величину левой стороны неравенства Белла, которая будет получена в данном эксперименте, в зависимости от эффективности детектора η. Какова минимальная η, для которой неравенство Белла будет нарушаться?

вернуться

50

S. J. Freedman and J. F. Clauser, Experimental test of local hidden-variable theories, Physical Review Letters 28, 938 (1972).

вернуться

51

A. Aspect, P. Grangier, G. Roger, Experimental Realization of Einstein — Podolsky — Rosen — Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities, Physical Review Letters 49, 91 (1982).

вернуться

52

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Violation of Bell’s inequality under strict Einstein locality conditions, Physical Review Letters 81, 5039 (1998).

вернуться

53

M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe, D. J. Wineland, Experimental violation of a Bell’s inequality with efficient detection, Nature 409, 791 (2001).

вернуться

54

B. Hensen et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature 526, 682 (2015).

вернуться

55

M. Guistina et al. Significant-loophole-free test of Bell’s theorem with entangled photons, Physical Review Letters 115, 250401 (2015).

вернуться

56

L. K. Shalm et al. A strong loophole-free test of local realism, Physical Review Letters 115, 250402 (2015).

вернуться

57

Конечно, можно настроить электронику таким образом, что при отсутствии сигнала в обоих детекторах экран случайным образом покажет величину ±1. При такой программе эксперимент будет соответствовать рис. 2.2, но проблему это не решит (см. упр. 2.52).