За открытием Белла последовало множество других предложений по демонстрации нелокальной природы квантовой механики. В этом разделе мы разберем один пример; он примечателен тем, что в нем нет неравенств[58]. В обсуждении мы будем следовать той же логике, что и в разговоре о теореме Белла. Сначала мы рассмотрим эксперимент с точки зрения передней панели и сделаем выводы с учетом гипотезы локального реализма. Затем опишем физику явлений, происходящих под этой панелью, и просчитаем теоретический прогноз в соответствии с законами квантовой механики.
У ГХЦ есть три удаленных наблюдателя: Алиса, Боб и Чарли. Каждый из них работает с устройством, аналогичным установке Белла, но кнопки на них помечены σx и σy. При каждом событии источник автоматически посылает три частицы на устройства Алисы, Боба и Чарли, где наблюдатели измеряют их, нажимая одну из кнопок. После проведения множества измерений все участники встречаются и обсуждают результаты.
Известно, что эта установка обладает следующим свойством (которое Алиса, Боб и Чарли проверяют, анализируя статистику результатов своих измерений): всякий раз, когда двое из них нажимают кнопку σy, а третий — кнопку σx, произведение этих трех результатов равно –1.
σxA σyB σyC = –1; (2.30a)
σyA σxB σyC = –1; (2.30b)
σyA σyB σxC = –1. (2.30c)
Упражнение 2.53. Принимая гипотезу локального реализма и используя скрытые параметры, как в подразд. 2.3.2, покажите, что можно определить общее распределение вероятностей управляющее одновременно всеми возможными наблюдениями, которые можно сделать в эксперименте ГХЦ. Покажите, что эти вероятности всегда неотрицательны и в сумме дают единицу.
Мы здесь следуем той же логике, что и при выводе неравенства Белла. Поскольку возможные наборы результатов (σiA, σjB, σkC) (где каждый из индексов i, j и k может принимать значения x и y) подчиняются общему распределению вероятностей, можно построить альтернативный эксперимент, в котором на трех устройствах нет никаких кнопок, но на экране они для каждого события показывают значения и σx, и σy. Такой альтернативный эксперимент демонстрировал бы те же самые статистические свойства, что и первоначальный. В частности, (2.30) выполнялись бы для каждого события.
Перемножим левые и правые части этих трех уравнений и заключим, что для любой тройки частиц верно следующее равенство:
Поскольку данный результат верен для альтернативного эксперимента, он должен быть верен и для его первоначального варианта. То есть всякий раз, когда все три наблюдателя нажимают кнопку «σx», произведение показываемых величин принимает значение –1. Такой вывод следует из локального реализма.
Теперь проведем квантовые рассуждения. Источник посылает Алисе, Бобу и Чарли три фотона в состоянии
Когда каждый из наблюдателей нажимает одну из кнопок, наблюдаемое, соответствующее оператору Паули, написанному на этой кнопке, измеряется на фотоне этого наблюдателя. Результат измерения, соответствующий одному из собственных значений этого наблюдаемого, появляется на экране.
Упражнение 2.54. Покажите, что |ΨGHZ⟩ есть собственное состояние операторов:
Часть a) данного упражнения означает, что каждый раз, когда двое из трех наблюдателей измеряют а третий — у своих частей |ΨGHZ⟩, произведение результатов их измерений будет равно –1 (см. упр. 2.24). Из этого следует, что установка соответствует данному выше описанию передней панели.
Часть b), в свою очередь, доказывает, что, когда все трое наблюдателей все время измеряют произведение их результатов равно +1. Этот результат прямо противоречит предсказанию в условиях локального реализма (2.31). В отличие от неравенства Белла, где нарушение локального реализма фиксируется путем собирания большого количества данных и вычисления средних значений, установка эксперимента ГХЦ показывает несовпадение каждый раз, когда наблюдатели производят измерение. Отсутствие статистической неопределенности делает рассуждение ГХЦ особенно элегантной демонстрацией квантовой нелокальности.
58
Теоретическая идея: D. M. Greenberger, M. A. Horne, A. Shimony, A. Zeilinger, in Bell