2.4. Взгляд на квантовые измерения
В конце предыдущей главы мы узнали, что любой квантовый процесс описывается некоторым унитарным оператором. В то же время постулат об измерениях гласит, что измерение превращает квантовую суперпозицию в статистическую смесь элементов измерительного базиса[59]. Этот процесс не может быть описан линейным оператором, поскольку тот по определению обратимо отображает любой элемент гильбертова пространства на другой элемент того же гильбертова пространства. Как можно разрешить данное противоречие?
Если этот вопрос кажется вам слишком абстрактным, переформулируем его более конкретно. Предположим, что наблюдатель Алиса измеряет диагонально поляризованный фотон
(где α и β действительны и положительны) в каноническом базисе (рис. 1.2 a). Этот фотон проходит через PBS или отражается, затем попадает на сенсор одного из фотодетекторов (отступление 1.2), где запускает лавинообразный процесс, производящий, в свою очередь, громкий щелчок, который Алиса может услышать. В какой момент суперпозиция (2.32) коллапсирует в множество вероятностей? Когда фотон походит через PBS? Или когда в одном из детекторов возникает лавина? Или когда звучит щелчок?
Для ответа на эти вопросы расскажу о модели квантовых измерений, предложенную Джоном фон Нейманом. В этой модели и квантовая система, которую предполагается измерять, и измерительный прибор рассматриваются как два гильбертовых пространства, становящихся в ходе измерения запутанными. Предположим, что изначально система находится в состоянии |ψ⟩ = Σi ψi |𝑣i⟩, где — базис измерения. Начальным состоянием прибора является |ω1⟩ — один из элементов ортонормального базиса в гильбертовом пространстве прибора. Во время измерения система взаимодействует с измерительным прибором и запутывается с ним посредством унитарной эволюции, порождая состояние[60]
Состояния |ω1⟩, …, |ωn⟩ макроскопически различны (например, включаются разные лампочки или стрелка занимает разные положения). Наблюдатель имеет доступ к прибору и может узнать его состояние.
В конкретном случае измерения поляризации фотона запутанность системы с прибором порождает состояние[61]
|ΨSA⟩ = α|H⟩ ⊗ |лавина в детекторе 1⟩ + β|V⟩ ⊗ |лавина в детекторе 2⟩. (2.34)
Суперпозиция (2.34) соответствует ситуации измерения Welcher Weg из разд. 1.5. Даже если рядом нет наблюдателя, который мог бы считывать результат измерения, одинокий фотон уже не может демонстрировать интерференцию, поскольку в состояние суперпозиции теперь вовлечен дополнительный объект — прибор.
Теперь предположим, что эксперимент проводит наблюдатель Алиса, которая может повторять его много раз. Теоретически у Алисы есть возможность убедиться в запутанной природе суперпозиции (2.34) путем измерений. С этой целью она должна будет сначала произвести множество измерений фотона в каноническом базисе и соотнести полученные результаты с показаниями детекторов — что позволит ей определить абсолютные значения α и β для двух слагаемых в (2.34). Кроме того, Алиса должна получить статистику измерений как для фотона, так и для детекторов в диагональном базисе и определить фазовое соотношение между членами суперпозиции (см. упр. 2.11). Конечно, в настоящее время такие измерения выходят далеко за пределы наших технических возможностей, но теоретически они вполне допустимы.
Но что, если Алиса ничего подобного не делает и слышит щелчок одного из детекторов в состоянии (2.34)? Поскольку сама она — тоже квантовый объект, мы можем продолжить нашу линию рассуждений и сказать, что Алиса становится частью все той же запутанной суперпозиции:
|ΨSAO⟩ = α|H⟩ ⊗ |лавина в детекторе 1⟩ ⊗ |Алиса слышит щелчок в детекторе 1⟩ + β|V⟩⊗ |лавина в детекторе 2⟩ ⊗ |Алиса слышит щелчок в детекторе 2⟩.
Этот момент отмечает принципиальную перемену для Алисы как наблюдателя. Какими бы интеллектуальными и техническими ресурсами Алиса ни обладала, она не может спроецировать себя на диагональный базис даже в принципе. В результате у Алисы нет возможности узнать, что она находится в состоянии суперпозиции. Для нее всякий раз, когда фотон горизонтален, слышится щелчок в детекторе 1, а когда вертикален — в детекторе 2. У Алисы также нет возможности выяснить экспериментально, что существует и другая часть суперпозиции, поскольку все, что она может наблюдать (фотон и детектор), согласовано с ее собственным состоянием. Для Алисы картина выглядит так, будто квантовое состояние фотона схлопнулось и случайным образом возник один из двух возможных результатов.
59
Этот стандартный подход к квантовым измерениям называют копенгагенской интерпретацией в честь Нильса Бора.
60
Может показаться, что (2.33) эквивалентно квантовому клонированию (подразд. 2.1.3), потому что для каждого элемента базиса системы прибор эволюционирует в соответствующий элемент базиса своего гильбертова пространства. На самом деле это не так. Настоящая операция клонирования клонировала бы также и состояния суперпозиции, т. е. переводила бы правую сторону уравнения (2.33) в вид Преобразование (2.33) этого не делает и, следовательно, не противоречит теореме о запрете клонирования.
61
Для удобства будем предполагать, что фотон не уничтожается в ходе обнаружения, и не будем учитывать тот факт, что горизонтальные и вертикальные фотоны следуют по разным пространственным траекториям.