Упражнения, которые я считаю более сложными, помечены звездочкой*. Здесь есть тонкость. Дело в том, что многие из них содержат утверждения, важные для изучения последующего материала. Поэтому, хотя допустимо отложить выполнение этих упражнений (или подробный разбор их решений) на потом, вам следует по крайней мере разобраться в утверждениях, которые в них содержатся.
Некоторые из упражнений (они помечены символом параграфа §) даны без решений. Как правило, это происходит в тех случаях, когда я считаю задачу относительно простой; тогда я обычно привожу ответ сразу после упражнения. Очень редко встречаются упражнения, помеченные и звездочкой, и символом параграфа. Такие «упражнения», по сути, представляют собой независимые исследовательские проекты, которыми вам, возможно, захочется заняться в свободное время.
Какими знаниями вам, по моему мнению, следует уже обладать, прежде чем открывать эту книгу?
• Я исхожу из того, что вы накомы с тригонометрией (знаете, например, как представить cos (α + β) или cos α cos β в виде суммы).
• Вы умеете работать с комплексными числами, имеете представление о понятиях сопряженности, комплексной фазы и комплексной экспоненты (к примеру, можете упростить |1 + eiϕ|2).
• У вас есть общее представление о теории вероятностей. Здесь вам может помочь приложение Б, где содержатся некоторые основы этой области знания.
• То же относится к физике поляризации оптической волны: в приложении В кратко изложена необходимая информация, но его нельзя считать хорошей заменой соответствующего учебника.
• У вас есть навыки дифференциального исчисления и решения обыкновенных дифференциальных уравнений, которые необходимы при изучении всех частей книги, особенно главы 3 (квантовая физика систем с непрерывными переменными); это требование распространяется на анализ функций многих переменных (якобиан и т. п.) для главы 4. По дифференциальному исчислению нет специального приложения, но в приложении Г говорится о дельта-функции Дирака, а также о прямом и обратном преобразованиях Фурье, так что предварительные знания по математической физике не требуются.
• Первостепенное значение в квантовой физике играет линейная алгебра, включающая в себя понятия линейных пространств, базиса, размерности, скалярного произведения, ортонормального базиса, линейных операторов и матриц, спектральную теорему, функции операторов и т. п. Все это изложено в приложении A. Однако базовые методы работы с матрицами, такие как их перемножение, нахождение собственных векторов и собственных значений, не рассматриваются в этом приложении и должны быть знакомы вам до начала изучения данного курса.
Предисловие к русскоязычному изданию
Название этой книги — «Отличная квантовая механика» — отражает не только ее качество и даже не оценку, которую вы, возможно, получите на экзамене, изучив ее. Главное, что книга отличается от тех учебников квантовой физики, к которым мы привыкли. Вместо разбора волновых функций и потенциальных ям (с чего стартуют все курсы, начиная от Ландау и Лифшица) в этой книге речь пойдет о концептуально более простых и в то же время более сутевых и интересных вещах: пространстве состояний, сущности измерений, запутанности и нелокальности. Об этом я подробно рассказываю выше в предисловии к англоязычному изданию. Здесь же я хочу поговорить о другом.
«Дай бог побольше разных стран, не потеряв своей, однако». По мерке этих слов Евгения Евтушенко, я счастливый человек. Покинув Родину в двадцать лет, я обрел ее вновь в сорок, когда начал регулярно приезжать в Россию по делам, связанным с созданием Российского квантового центра и последующей научной работой в нем. Это возвращение подарило мне неугасающий душевный подъем, новую ступень для личностного роста и новый плацдарм для научных идей. Помимо этого, я смог увидеть и критически оценить — с высоты собственного преподавательского опыта — разницу в методах обучения физике в России и за рубежом.
У российско-советской школы немало заслуг перед мировой культурой — как в науке и технике, так и «в области балета». Одним из ее важнейших преимуществ является, как мне кажется, глубина рассмотрения материала, желание дойти до самой сути явления. Но у этой медали есть и оборотная сторона. Очевидно, что любая учеба — тяжелый, мучительный труд. No pain, no gain. Однако в западной системе образования имеет место сознательное стремление помочь студенту в этом труде, минимизировать его мучения посредством множества примеров и иллюстраций (и порой, к сожалению, излишне поверхностного изложения). Вероятно, это следствие рыночной экономики в сфере образовательных услуг: если студенту станет слишком трудно, он просто купит другой учебник или уйдет в другой университет. В советской же школе подобные стремления со стороны преподавателей почти полностью отсутствуют. Более того, зачастую имеется подспудное убеждение, что чем болезненнее студенту дается гранит науки, тем ему больше пользы, тем лучше он выучится. Это хорошо показано в фильме «Легенда № 17» на примере хоккея — но и в физике за примером далеко ходить не надо: достаточно открыть того же Ландафшица.