Таким образом, движение самолета со скоростью 800 км/час относительно, оно существует для зрителей на земле, летающих птиц и облаков вокруг него, но отсутствует внутри лайнера. Покой – относителен!
Внутри колеса
Чтобы продемонстрировать тот факт, что движение всегда происходит лишь относительно чего-либо, рассмотрим следующую простую задачу.
Задача 5. На рис.5 изображено колесо, катящееся, вправо со скоростью 10 м/с. Радиус колеса 1 м. Чему равна скорость движения точки А, расположенной на ободе, относительно точки на оси «О» колеса?
Ответ. Условия задачи оказались провокационными. Расстояние между точками А и О не меняется! Поэтому их взаимная скорость равна нулю. В этом можно убедиться визуально, если закрепить в точке «А» диска видеокамеру и направить ее к точке «О». На экране мы увидим, что, точка «А» покоится относительно оси «О» (хотя и движется относительно земли).
С относительностью, сложением и разложением скоростей мы сталкиваемся регулярно на автомобильных дорогах. И хорошо было бы, если бы иногда такое «сложение» – было лишь воображаемым. Рассмотрим некоторые эффекты аварийных движений в следующих задачах.
Рис.5. Диск, катящийся вправо
Откуда берется внезапное вращение автомобиля?
Яркими курьезами, связанными со сложением скоростей, могут служить ситуации, связанные со сложением вращательного и поступательного движения. Рассмотрим сценарий из повседневной жизни.
Задача 6. На рис.6 изображена схема аварийной ситуации. При движении автомобиля на скользком вираже А-В произошла потеря сцепления колес с дорогой и машину выбросило на обочину ВС. Как известно из практики вождения, в подобных ситуациях возникает вращение автомобиля в горизонтальной плоскости. Почему это происходит? Чему равна частота вращения?
Решение. При рассмотрении данной ситуации необходимо учесть, что реальное тело, в отличие от материальной точки, может одновременно двигаться поступательно и совершать вращение «как целое». Поступательное движение характеризуется линейной скоростью v, измеряемой в м/c, а вращательное движение – угловой скоростью ω, измеряемой в радианах в секунду.
Нетрудно видеть, что до точки «А» движение автомобиля было «простым»: поступательным и прямолинейным. После входа в вираж «АВ» движение автомобиля делается сложным. Можно видеть, что машина начинает менять свою ориентацию. В частности, пройдя четверть поворота, ее ось, направленная от заднего сидения к переднему, совершит поворот φ на 90 градусов, то есть на π/2 радиан. Можно констатировать, что машина приобрела угловую скорость ω= Δφ /Δt, где φ – угол поворота, символ Δ означает «величину изменения».
Сложный характер движения на участке AB незаметен, но он проявится сразу после того, как как машина вылетит на скользкую обочину ВС. При этом центр тяжести автомобиля продолжит свое движение со скоростью v прямолинейно и сохранится полученное вращение как целого, со скоростью ω (рис.6).
Рис.6. Движение автомобиля на скользком вираже; B – потеря контакта, прямая стрелка – вектор скорости поступательного движения, дуговая стрелка обозначает угловую скорость
Оценим масштаб наблюдаемого эффекта вращения. Пусть скорость v = 50 м/с и радиус виража R = 25м. Тогда скорость вращения ω легко оценить, используя равенство: ω = Δφ /Δt, где Δφ и Δt – изменение угла и времени при движении по виражу. Если выражать Δφ в радианах, а ω – в радианах в секунду, то нетрудно продолжить полученное равенство: ω = v/R, то есть величина ω пропорциональна v и обратно пропорциональна значению радиуса виража R. Заключаем: в рассматриваемых условиях период вращения будет равен T = 2 π / ω = 3,14 сек.
Ответ. Частота вращения равна ω = v/R.
В рассмотренном примере проявился сложный характер движения, характеризуемый наличием двух независимых составляющих: вращательного и поступательного. Частота вращения ω пропорциональна скорости v и обратно пропорциональна радиусу виража R . Попутно заметим, что в реальности приходится сталкиваться с автомобилями разных размеров, массы. Как это сказывается на скорости вращения? Может ли инициировать вращение ряд инцидентов: столкновения с препятствиями и другими машинами, состояние шин, дорожного полотна. Выносим эти вопросы на самостоятельное изучение.
Может ли лед сжигать?