Для обозначения дисперсий МНК-оценок неизвестных параметров модели регрессии используется матрица ковариаций.
Матрицей ковариаций МНК-оценок параметров линейной модели парной регрессии называется выражение вида:
где
– дисперсия МНК-оценки параметра модели регрессии β0;
– дисперсия МНК-оценки параметра модели регрессии β1.
Матрицей ковариаций МНК-оценок параметров линейной модели множественной регрессии называется выражение вида:
где G2(ε) – это дисперсия случайной ошибки модели регрессии ε.
Для линейной модели парной регрессии дисперсии оценок неизвестных параметров определяются по формулам:
1) дисперсия МНК-оценки коэффициента модели регрессии β0:
2) дисперсия МНК-оценки коэффициента модели регрессии β1:
где G2(ε) – дисперсия случайной ошибки уравнения регрессии β;
G2(x) – дисперсия независимой переменой модели регрессии х;
n – объём выборочной совокупности.
В связи с тем, что на практике значение дисперсии случайной ошибки модели регрессии G2(ε) неизвестно, для вычисления матрицы ковариаций МНК-оценок применяют оценку дисперсии случайной ошибки модели регрессии S2(ε).
Для линейной модели парной регрессии оценка дисперсии случайной ошибки определяется по формуле:
где
– это остатки регрессионной модели, которые рассчитываются как
Тогда оценка дисперсии МНК-оценки коэффициента β0 линейной модели парной регрессии будет определяться по формуле:
Оценка дисперсии МНК-оценки коэффициента β1линейной модели парной регрессии будет определяться по формуле:
Для модели множественной регрессии общую формулу расчёта матрицы ковариаций МНК-оценок коэффициентов на основе оценки дисперсии случайной ошибки модели регрессии можно записать следующим образом:
18. Характеристика качества модели регрессии
Качеством модели регрессии называется адекватность построенной модели исходным (наблюдаемым) данным.
Для оценки качества модели регрессии используются специальные показатели.
Качество линейной модели парной регрессии характеризуется с помощью следующих показателей:
1) парной линейный коэффициент корреляции, который рассчитывается по формуле:
где G(x) – среднеквадратическое отклонение независимой переменной;
G(y) – среднеквадратическое отклонение зависимой переменной.
Также парный линейный коэффициент корреляции можно рассчитать через МНК-оценку коэффициента модели регрессии
по формуле:
Парный линейный коэффициент корреляции характеризует степень тесноты связи между исследуемыми переменными. Он рассчитывается только для количественных переменных. Чем ближе модуль значения коэффициента корреляции к единице, тем более тесной является связь между исследуемыми переменными. Данный коэффициент изменяется в пределах [-1; +1]. Если значение коэффициента корреляции находится в пределах от нуля до единицы, то связь между переменными прямая, т. е. с увеличением независимой переменной увеличивается и зависимая переменная, и наборот. Если коэффициент корреляции находится в пределах от минус еиницы до нуля, то связь между переменными обратная, т. е. с увеличением независимой переменной уменьшается зависимая переменная, и наоборот. Если коэффициент корреляции равен нулю, то связь между переменными отсутствует. Если коэффициент корреляции равен единице или минус единице, то связь между переменными существует функциональная связь, т. е. изменения независимой и зависимой переменных полностью соответствуют друг другу.
2) коэффициент детерминации рассчитывается как вадрат парного линейного коэффициента корреляции и обозначается как ryx2. Данный коэффициент характеризует в процентном отношении вариацию зависимой переменной, объяснённой вариацией независимой переменной, в общем объёме вариации.
Качество линейной модели множественной регрессии характеризуется с помощью показателей, построенных на основе теоремы о разложении дисперсий.
Теорема. Общая дисперсия зависимой переменной может быть разложена на объяснённую и необъяснённую построенной моделью регрессии дисперсии:
G2(y)=σ2(y)+δ2(y),
где G2(y) – это общая дисперсия зависимой переменной;
σ2(y) – это объяснённая с помощью построенной модели регрессии дисперсия переменной у, которая рассчитывается по формуле: