Уже после смерти отца продолжили выходить его работы, папины коллеги выпускали статьи, материалом для которых он делился в их последние встречи. И вот еще один его труд – книга, которую вы держите в руках. Папа, кстати, сразу хотел выпустить «Озадачник» еще и в книжном формате. «Понимаешь, сейчас совсем не осталось хороших задачников!» – говорил он. В своих воспоминаниях я, любя, сравниваю его с Чеширским котом. Да, он ушел, но осталась его улыбка. А то, что он придумал столько времени назад, продолжает воплощаться и сейчас. Мысль – она сильнее многих обстоятельств.
Логика
1. Странная рыба
В супермаркетах отдел консервированной рыбы завален сардинами, а вот в отделе свежей рыбы их никогда не бывает. Чем это можно объяснить?
1. Сардины – недорогая рыба, рыбакам выгоднее закатать ее в банку прямо в море, чем возиться с поставками свежевыловленного продукта в магазины.
2. Свежие сардины обладают неприятными запахом и привкусом, которые уходят только после консервации.
3. Сардины? Их просто не существует!
Многих этот факт удивляет, но можно поручиться за его 100-процентную достоверность: такого сорта рыбы, как сардины, не существует в природе. Сардинами именуют мелкую консервированную рыбешку самой разной породы. Это как шпроты (прямая аналогия) и таинственная рыба сурими, которая якобы входит в состав всех крабовых палочек: сурими в переводе с японского значит «фарш», в крабовые палочки накладывают фарш из рыбы подешевле – минтая и т. п.
2. Сколько мне лет?
Молодой аспирант приступил к чтению курса логики в университете. Одна из студенток поинтересовалась, сколько ему лет, и он ответил ей так:
– Я родился в понедельник, что некоторые считают плохой приметой. Кстати, в этом году мой день рождения также придется на понедельник. Но я в приметы не верю, к тому же все не так уж и плохо – ведь за прошедшие годы день рождения у меня выпадал на каждый день недели одинаковое количество раз. Так сколько же мне лет? – спрошу я у вас.
А действительно, сколько?
1. 22.
2. 27.
3. 32.
В обычном, не високосном году 365 = 52 × 7 + 1 дней. Получается, что день недели каждый год сдвигается на единицу: если в этом году 1 января приходится на понедельник, то в следующем году на вторник, потом на среду и т. д. Если бы не високосные годы, то с периодом в семь лет вся история строго повторялась бы: опять Новый год в понедельник, вторник и т. д. Но каждые четыре года происходит сбой: в году на один день больше, и мы «перескакиваем» через один день недели (если 1 января в високосном понедельник, то в следующем это среда). Тем не менее понятно, что выпадение дней недели на определенную дату – процесс периодический, и логично предположить, что период у этого процесса – наименьшее общее кратное периодов в семь (смена дней недели) и четыре (промежуток между високосными годами) года, т. е. 28. Это действительно так и проверяется элементарно (просто изучите календарь). Итак, в текущем году аспиранту должно исполниться 28 лет (есть еще возможности 56, 84 и т. д., но их отбрасываем – в условии сказано, что он молод), только в этом случае будет удовлетворено условие «день рождения у меня выпадал на каждый день недели одинаковое количество раз». День рождения еще не прошел (аспирант говорит о нем в будущем времени) – значит, сейчас ему 27.
3. Орел или решка?
Монета выпадает орлом или решкой с одинаковой вероятностью 1/2 (50 %). В эксперименте подбросили монету 10 раз и – чудеса! – все 10 раз выпал орел. Какова вероятность, что и на одиннадцатом броске снова выпадет орел?
1. 1/2 (50 %).
2. 1/2 в 11-й степени (0,0005, или 0,05 %), практически невероятное событие.
3. Определяется временем между бросками: если подождать достаточно долго, то события будут независимыми, и вероятность составит 50 %; если бросить сразу, то вероятность 11 раз подряд получить орла – 0,05 %.