Можно ли силу тяжести использовать для того, чтобы… увеличить потолок ракеты?
Представим себе, что две совершенно одинаковые ракеты, потолок которых равен 9 тыс. метров, подняты на какую-либо высокую гору. Пусть от вершины этой горы тянется вертикально вниз пропасть глубиной в 4 тыс. метров. На дне пропасти устроена сферическая воронка, отличающаяся почти идеально гладкой поверхностью.
Направим одну из ракет вверх. А другую… бросим вниз.
Нетрудно вычислить, что свободно падающая ракета пройдет расстояние в 4 тыс. метров за 28,6 секунды. При этом ее конечная скорость у Земли составит 280 метров в секунду.
У поверхности Земли направление ракеты, попавшей в воронку, изменяется без потери ее живой силы. Ракета вылетает из воронки вертикально вверх. Кроме того, в этот момент начинают действовать ракетные двигатели, которые сообщают ей дополнительную начальную скорость — 420 метров в секунду.
Следовательно, от Земли вверх ракета начнет движение со скоростью 700 метров в секунду. При такой огромной начальной скорости она пройдет обратный путь до вершины горы не за 28,6 секунды, а только за 5,9 секунды.
Скорость ракеты под действием силы тяжести будет уменьшаться каждую секунду на 9,8 метра, а за 5,9 секунды потеря в скорости составит 58 метров в секунду. Таким образом, падая с вершины горы, ракета приобрела скорость 280 метров в секунду, а при взлете потеряла на этом же расстоянии всего лишь 58 метров в секунду.
Следовательно, чистый выигрыш в скорости по сравнению с первой ракетой составляет 222 метра в секунду.
Пролетев мимо вершины горы со скоростью 642 метров в секунду, ракета взлетит отсюда не на 9 тыс. метров, а уже на 21 тыс. метров. Так, благодаря использованию силы тяжести потолок ракеты повысился на 12 тыс. метров.
Две одинаковые ракеты находятся на высоте 4 километров; одна из них взлетает кверху и пролетает расстояние, равное 9 километрам; другую же ракету, с выключенными двигателями, бросают в пропасть. У самой поверхности Земли направление этой ракеты изменяется без потери ее живои силы, в этот же момент начинают работать двигатели ракеты. Этот летательный аппарат поднимается на высоту 21 километра, считая от вершины горы.
Этот же принцип применим и в других случаях: можно использовать земное притяжение для того, чтобы… преодолеть земное притяжение и вырваться в межпланетное пространство.
Чтобы покинуть Землю, ракетный снаряд должен обладать начальной скоростью не менеее 7,9 километра в секунду. Но и при этой колоссальной скорости он не выйдет из сферы земного притяжения, а станет, в лучшем случае, спутником Земли. Для того же, чтобы попасть в межпланетное пространство, требуется начальная скорость 11,2 километра в секунду. Однако, если использовать силу земного притяжения, то можно улететь в межпланетное пространство на ракете, обладающей почти вдвое меньшей начальной скоростью, равной всего 5,8 километра в секунду. Вообразим, что сквозь земной шар, по диаметру, прорыт тоннель. Вместо того чтобы направить ракету вертикально вверх, бросим ее в этот воображаемый бездонный колодец.
Ракета начнет падать вниз под действием силы тяжести. По мере приближения к центру Земли скорость падения будет нарастать, и в центре земного шара эта скорость достигнет колоссальной величины — 7,9 километра в секунду.
Но вот ракета прошла центр Земли. Она продолжает падать и дальше. Однако теперь скорость ее падения так же постепенно начнет уменьшаться, как до этого возрастала. К концу тоннеля скорость ракеты упадет до нуля. Ракета остановится и начнет падать в обратном направлении. Это падение «туда и обратно», если не принимать во внимание сопротивление воздуха, будет повторяться бесконечное число раз.
Теперь вообразим, что в тот момент, когда ракета проходит центр Земли, включаются ракетные двигатели, которые сообщают нашему аппарату дополнительную скорость в 5,8 километра в секунду. Тогда от центра земного шара наш аппарат будет двигаться с начальной скоростью 13,7 километра в секунду. Поэтому ракета пройдет вторую половину пути гораздо быстрее, чем при свободном падении с выключенными двигателями. Тем самым она будет меньшее время находиться в поле земного притяжения. И когда ракета пролетит весь бездонный колодец, скорость ее окажется равной не 5,8 километра в секунду, а 11,2 километра в секунду. При такой начальной скорости она преодолеет земное притяжение и вылетит в межпланетное пространство.