Выбрать главу

Разумеется, производители компиляторов вправе добавлять в язык любые расширения, а наличие различных API для поддержки многопоточности в языке С, например, в стандарте POSIX С Standard и в Microsoft Windows API, заставило многих производителей компиляторов С++ поддержать многопоточность с помощью платформенных расширений. Как правило, эта поддержка ограничивается разрешением использовать соответствующий платформе С API с гарантией, что библиотека времени исполнения С++ (в частности, механизм обработки исключений) будет корректно работать при наличии нескольких потоков. Хотя лишь очень немногие производители компиляторов предложили формальную модель памяти с поддержкой многопоточности, практическое поведение компиляторов и процессоров оказалось достаточно приемлемым для создания большого числа многопоточных программ на С++.

Не удовлетворившись использованием платформенно-зависимых С API для работы с многопоточностью, программисты на С++ пожелали, чтобы в используемых ими библиотеках классов были реализованы объектно-ориентированные средства для написания многопоточных программ. В различные программные каркасы типа MFC и в универсальные библиотеки на С++ типа Boost и АСЕ были включены наборы классов С++, которые обертывали платформенно-зависимые API и предоставляли высокоуровневые средства для работы с многопоточностью, призванные упростить программирование. Детали реализации в этих библиотеках существенно различаются, особенно в части запуска новых потоков, но общая структура классов очень похожа. В частности, во многих библиотеках классов С++ применяется крайне полезная идиома захват ресурса есть инициализация (RAII), которая материализуется в виде блокировок, гарантирующих освобождение мьютекса при выходе из соответствующей области видимости.

Во многих случаях поддержка многопоточности в имеющихся компиляторах С++ вкупе с доступностью платформенно-зависимых API и платформенно-независимых библиотек классов типа Boost и АСЕ оказывается достаточно прочным основанием, на котором можно писать многопоточные программы. В результате уже написаны многопоточные приложения на С++, содержащие миллионы строк кода. Но коль скоро прямой поддержки в стандарте нет, бывают случаи, когда отсутствие модели памяти, учитывающей многопоточность, приводит к проблемам. Особенно часто с этим сталкиваются разработчики, пытающиеся увеличить производительность за счет использования особенностей конкретного процессора, а также те, кто пишет кросс-платформенный код, который должен работать независимо от различий между компиляторами на разных платформах.

1.3.2. Поддержка параллелизма в новом стандарте

Все изменилось с выходом стандарта С++11. Мало того что в нем определена совершенно новая модель памяти с поддержкой многопоточности, так еще и в стандартную библиотеку С++ включены классы для управления потоками (глава 2), защиты разделяемых данных (глава 3), синхронизации операций между потоками (глава 4) и низкоуровневых атомарных операций (глава 5).

В основу новой библиотеки многопоточности для С++ положен опыт, накопленный за время использования вышеупомянутых библиотек классов. В частности, моделью новой библиотеки стала библиотека Boost Thread Library, из которой заимствованы имена и структура многих классов. Эволюция нового стандарта была двунаправленным процессом, и сама библиотека Boost Thread Library во многих отношениях изменилась, чтобы лучше соответствовать стандарту. Поэтому пользователи Boost, переходящие на новый стандарт, будут чувствовать себя очень комфортно.

Поддержка параллелизма — лишь одна из новаций в стандарте С++. Как уже отмечалось в начале главы, в сам язык тоже внесено много изменений, призванных упростить жизнь программистам. Хотя, вообще говоря, сами по себе они не являются предметом настоящей книги, некоторые оказывают прямое влияние на библиотеку многопоточности и способы ее использования. В приложении А содержится краткое введение в эти языковые средства.

Прямая языковая поддержка атомарных операций позволяет писать эффективный код с четко определенной семантикой, не прибегая к языку ассемблера для конкретной платформы. Это манна небесная для тех, кто пытается создавать эффективный и переносимый код, — мало того что компилятор берет на себя заботу об особенностях платформы, так еще и оптимизатор можно написать так, что он будет учитывать семантику операций и, стало быть, лучше оптимизировать программу в целом.