Выбрать главу

Идентификаторы потоков можно было бы также использовать как ключи ассоциативных контейнеров, если с потоком нужно ассоциировать какие-то данные, а другие механизмы, например поточно-локальная память, не подходят. Например, управляющий поток мог бы сохранить в таком контейнере информацию о каждом управляемом им потоке. Другое применение подобного контейнера — передавать информацию между потоками.

Идея заключается в том, что в большинстве случаев std::thread::id вполне может служить обобщенным идентификатором потока и лишь, если с идентификатором необходимо связать какую-то семантику (например, использовать его как индекс массива), может потребоваться другое решение. Можно даже выводить объект std::thread::id в выходной поток, например std::cout:

std::cout << std::this_thread::get_id();

Точный формат вывода зависит от реализации; стандарт лишь гарантирует, что результаты вывода одинаковых идентификаторов потоков будут одинаковы, а разных различаться. Поэтому для отладки и протоколирования это может быть полезно, но так как никакой семантики у значений идентификаторов нет, то сделать на их основе какие-то другие выводы невозможно.

2.6. Резюме

В этой главе мы рассмотрели основные средства управления потоками, имеющиеся в стандартной библиотеке С++: запуск потоков, ожидание завершения потока и отказ от ожидания вследствие того, что поток работает в фоновом режиме. Мы также научились передавать аргументы функции потока при запуске и передавать ответственность за управление потоком из одной части программы в другую. Кроме того, мы видели, как можно использовать группы потоков для разбиения задачи на части. Наконец, мы обсудили механизм идентификации потоков, позволяющий ассоциировать с потоком данные или поведение в тех случаях, когда использовать другие средства неудобно. Даже совершенно независимые потоки позволяют сделать много полезного, как видно из листинга 2.8, но часто требуется, чтобы работающие потоки обращались к каким-то общим данным. В главе 3 рассматриваются проблемы, возникающие при разделении данных между потоками, а в главе 4 — более общие вопросы синхронизации операций с использованием и без использования разделяемых данных.

Глава 3.

Разделение данных между потоками

В этой главе:

■ Проблемы разделения данных между потоками.

■ Защита данных с помощью мьютексов.

■ Альтернативные средства защиты разделяемых данных.

Одно из основных достоинств применения потоков для реализации параллелизма — возможность легко и беспрепятственно разделять между ними данные, поэтому, уже зная, как создавать потоки и управлять ими, мы обратимся к вопросам, связанным с разделением данных.

Представьте, что вы живете в одной квартире с приятелем. В квартире только одна кухня и только одна ванная. Если ваши отношения не особенно близки, то вряд ли вы будете пользоваться ванной одновременно, поэтому, когда сосед слишком долго занимает ванную, у вас возникает законное недовольство. Готовить два блюда одновременно, конечно, можно, но если у вас духовка совмещена с грилем, то ничего хорошего не выйдет, когда один пытается жарить сосиски, а другой — печь пирожные. Ну и все мы знаем, какую досаду испытываешь, когда, сделав половину работы, обнаруживаешь, что кто-то забрал нужный инструмент или изменил то, что вы уже сделали.

То же самое и с потоками. Если потоки разделяют какие-то данные, то необходимы правила, регулирующие, какой поток в какой момент к каким данным может обращаться и как сообщить об изменениях другим потокам, использующим те же данные. Легкость, с которой можно разделять данные между потоками в одном процессе, может обернуться не только благословением, но проклятием. Некорректное использование разделяемых данных — одна из основных причин ошибок, связанных с параллелизмом, и последствия могут оказаться куда серьезнее, чем пропахшие сосисками пирожные.

Эта глава посвящена вопросу о том, как безопасно разделять данные между потоками в программе на С++, чтобы избежать возможных проблем и достичь оптимального результата.

3.1. Проблемы разделения данных между потоками

Все проблемы разделения данных между потоками связаны с последствиями модификации данных. Если разделяемые данные только читаются, то никаких сложностей не возникает, поскольку любой поток может читать данные независимо от того, читают их в то же самое время другие потоки или нет. Но стоит одному или нескольким потокам начать модифицировать разделяемые данные, как могут возникнуть неприятности. В таком случае ответственность за правильную работу ложится на программиста.