Problems of verification aside, the simplicity–complexity distinction derives from the assumption that percepts are constructed of simple elements that have been joined through association. Presumably, the trained introspectionist can dissociate the constituent elements of a percept from one another, and in so doing, experience them as simple, raw sensations. Efforts to approach the experience of simple sensations might also be made by presenting very simple, brief, isolated stimuli; e.g., flashes of light.
Another commonly offered basis for distinction is the notion that perceiving is subject to the influence of learning while sensing is not. It might be said that the sensations generated by a particular stimulus will be essentially the same from one time to the next (barring fatigue or other temporary changes in sensitivity), while the resulting percepts may vary considerably, depending on what has been learned between one occasion and the next.
Some psychologists have characterized percepts as typically related to external objects and sensations as more nearly subjective, personal, internally localized experiences. Thus, a spontaneous pain in the finger would be called a sensation; however, if the salient feature of experience is that of a painfully sharp, pointed object, such as a pin located “out there,” it would be called a percept.
The above definitional criteria all relate to properties of experience; that is, they are psychological. An alternative way of distinguishing between sensing and perceiving that has become widely accepted is physiological-anatomical rather than psychological. In this case, sensations are identified with neural events occurring immediately beyond the sense organ, whereas percepts are identified with activity farther “upstream” in the nervous system, at the level of the brain. This assignment of anatomical locations to sensory and to perceptual processes seems consistent with psychological criteria. That is, the complexity and variability of percepts (both a product of learning) are attributed to the potential for physiological modification inherent in the vastly complex neural circuitry of the brain. Temporal (time) relations
Clearly, many subjective processes (such as problem solving) take time to run their courses. This is true even for such relatively simple activities as perceptual discriminations in the size of different objects. It is not readily apparent, however, whether percepts themselves—which, for example, might enter as elements in problem solving—take time to form. To the naıve observer, percepts probably do seem essentially instantaneous: the moment a square is shown, a square seems to be seen. Yet, experimental evidence suggests that percepts, even of simple geometric forms, follow a measurable, developmental time course. In some instances the temporal development of percepts is relatively long (on the order of seconds), and in some it is quite brief (on the order of thousandths of a second).
Pictures that are incomplete or ambiguous provide good examples of relatively long-term temporal development of percepts. Look at Figure 1 and continue looking until you see something more than a pattern of black, gray, and white patches. Abruptly, you probably will perceive a familiar face that, on subsequent viewing, will reappear to you without difficulty. How long it takes for such a percept to develop will vary considerably from one person to another, perhaps revealing fundamental differences among individuals in their speed of perceptual processing. It might be instructive to show Figure 1 to several people, and with the aid of a stopwatch, measure the time it takes each of them to achieve the desired percept, both initially and then on some later occasion. (Figure 1 commonly is seen by most people as the face of Abraham Lincoln.)
Figure 1: An ambiguous picture. Increasing viewing distance permits more precise perception (see text).AT&T Bell Laboratories/AT&T Archives
A somewhat different way in which percepts may change with time is illustrated in illusion and hallucination. On initial viewing of this type of drawing, one will probably immediately see a meaningful picture. After continued gazing at the drawing, the initial percept may abruptly be replaced by another. Thereafter, the two percepts should alternate with the passage of time. Stimuli of this sort (which can yield more than one percept) raise such questions as, for example, what determines the initial percept; why do some people first see a vase whereas others see two profiles; why does the initial percept give way to the alternate; what determines the rate of fluctuation from one percept to the other; do differences from one person to another in the rate of fluctuation of ambiguous figures indicate fundamental differences in perceptual activity? Tentative answers to such questions continue to be proposed.
Instances of slowly developing percepts require relatively simple procedures to uncover. Those percepts with a very rapid time course may be studied with the aid of instruments known as tachistoscopes that permit the durations of visual stimuli to be precisely controlled. Sophisticated electronic tachistoscopes flash reliably for periods as brief as one millisecond (one-thousandth of a second). Such precision permits study of the short-term development (microgenesis) of such percepts as those of simple geometric figures. Thus, it has been found that perception of a small black disk is disrupted (masked) by the rapidly successive tachistoscopic presentation of a second stimulus: a black ring that fits snugly around the disk. Indeed, as far as experimental subjects can tell, the disk target simply does not appear, though when flashed without being followed by the ring, it is readily detectable. Other target and mask stimuli also have been successfully employed.
It has been theorized that it takes time for any percept to develop; that one’s experience of a figure such as a disk develops from the figure’s centre outward; that one’s percept of the disk becomes stable only when the outer contour is appreciated; and that the ring functions in backward masking (metacontrast) because in the course of its own emergence as a percept the inner contour of the ring “absorbs” the perceptually developing contour of the disk. (Unless the viewer becomes aware of its contour, the disk theoretically cannot be perceived.) This interpretation is consistent with evidence of an optimal time interval between disk and ring onsets (about 30 to 50 milliseconds) for the best masking effect. Thus, masking is most evident at the moment developing awareness of disk contour is held to coincide in space and time with the initial perceptual growth of the ring’s inner contour. If the ring is presented too soon or too late, theoretically, the contour absorption on which masking presumably depends is ineffective.
While such theories are controversial, masking experiments in general do clearly indicate that in human beings there is a brief period (100 to 200 milliseconds at most) during which a percept is highly vulnerable to disruption. Whatever its exact mechanism, the phenomenon of masking manifestly demonstrates that percepts do not emerge instantaneously and full-blown at the moment of sensory stimulation. Thus, assuming that percepts are synthesized from simpler elements, relatively complex percepts would be expected to take longest to develop and, hence, to be most vulnerable to masking. Yet empirical studies show just the opposite, indicating that the more complex the visual target, the more difficult it is to mask. Perceiving as synthesizing Innate versus learned perception