Рис. 16. Дождь давит на открытую чашку весов с силой, которую можно измерить.
Дождевые капли будут ударяться об открытую плоскую чашку весов и стекать с нее. Удары отдельных капель, складываясь, заставят чашку весов опуститься. Чтобы привести весы в равновесие, надо положить на вторую чашку гири. Уравновесив весы и подсчитав вес положенных гирь, мы определим силу, с которой дождь давит на открытую чашку весов.
Если теперь заменить плоскую чашку чашкой того же веса, но больших размеров, то для уравновешивания весов понадобится и больше гирь. Следовательно, один и тот же дождь давит на большую чашку весов с большей силой. Поэтому если мы хотим указанным способом охарактеризовать силу, с которой давят падающие капли дождя, то необходимо условиться, каких размеров следует брать плоскую чашку. Проще всего принять поверхность такой условной чашки равной одному квадратному сантиметру.
Если для поддержания весов в равновесии в описанном опыте пришлось положить на закрытую чашку 400 граммов, а поверхность открытой чашки была 20х20=400 квадратных сантиметров, то, значит, дождь давил на чашку с силой, равной 400 г:400 см2, то-есть с силой в 1 грамм на каждый квадратный сантиметр поверхности чашки.
Силу, приходящуюся на единицу поверхности, называют давлением, и можно сказать, что давление дождя в описанном опыте равнялось 1 грамму на квадратный сантиметр поверхности.
Какое же отношение имеет сказанное к свойствам газов? Самое непосредственное!
Мы знаем, что молекулы газов беспорядочно движутся со скоростями, близкими к скорости полета пули. При движении молекулы сталкиваются со своими соседями и ударяются о стенки сосуда, в который заключен газ. Если наполнить бутылку обычным, не сжатым воздухом, то число ударов, которое испытывает каждый квадратный сантиметр поверхности бутылки в 1 секунду, выразится цифрой с 22 нулями. Это очень большое число. Если бы такое число просяных зерен положить рядышком одно к другому, то можно было бы сто раз протянуть эту дорожку из зернышек до одной из ближайших звезд и обратно.
Таким образом, на стенки бутылки непрерывно падает чрезвычайно частый дождь мельчайших «капелек» вещества — молекул. Частицы газа как бы бомбардируют стенки сосуда.
Удары отдельных молекул так слабы, что не отмечаются ни приборами, ни нашими органами чувств, но они так часто следуют друг за другом, что, сливаясь вместе, производят давление, которое уже нетрудно измерить приборами или ощутить непосредственно.
От чего зависит давление газа?
Очевидно, что чем больше молекул ударится в единицу времени о какую-либо поверхность, тем большее давление будет сна испытывать. Кроме того, давление зависит от скорости движения молекул газа. Чем быстрее движутся молекулы, тем сильнее они ударяются о поверхность и тем больше будет производимое ими давление.
А что же происходит при сжатии газа?
Уменьшив объем, занимаемый тазом, в два раза, мы тем самым в два раза увеличим число молекул в каждом кубическом сантиметре, а значит, в два раза увеличим и число ударов о стенки сосуда в каждую секунду.
Если сжимать газ при постоянной температуре, то скорость молекул не изменяется: они ударяют о стенки с прежней силой, только чаще. Так, в нашем примере после уменьшения объема газа молекулы будут ударять о стенки в два раза чаще, и, значит, в два раза возрастет давление газа.
При очень сильном сжатии газ может сильно нагреваться. Кто знаком с работой дизельного мотора, тот знает, что в цилиндрах этой машины нет никаких «свечей» или каких-либо других средств зажигания. Поршень, сжимая газ в цилиндре, заполненном горючей смесью, сообщает ее молекулам такую скорость, что смесь разогревается до температуры вспышки. Воспламенившись, смесь быстро сгорает. Температура продуктов горения поднимается при этом еще выше, давление в цилиндре увеличивается, и поршень отбрасывается назад.
Вспомните, что, накачивая велосипедную шину, вы ощущаете, как нагревается насос. Многие скажут, что он нагревается благодаря трению поршня о стенки насоса. Это не совсем верно. Качайте этим же насосом воздух не в шину, а просто в атмосферу. Если насос при этом и нагреется, то слабее, чем в первый раз. Главная причина нагревания насоса заключается опять-таки в том, что, быстро сжимая газ, вы увеличиваете среднюю скорость его молекул, или, другими словами, повышаете его температуру.