Выбрать главу

В жидкости положение иное.

Молекулы жидкости располагаются очень близко друг к другу. Поэтому их движение напоминает скорее дрожание, при котором они только незначительно смещаются, постоянно возвращаемые назад ударами соседних молекул. Сравнительно редко какой-нибудь молекуле удается вырваться из тесного окружения своих соседей. Большую же часть времени она движется как бы в клеточке, стенки которой образуют ближайшие к ней частицы.

Движение молекулы в этой ячейке напоминает движение маятника стенных часов-ходиков. Такое движение называют колебательным.

Имеется, однако, существенное отличие колебаний, совершаемых маятником часов, от колебаний молекул жидкости. При колебании маятника подвес его остается неподвижным и только диск отклоняется попеременно то вправо, то влево. Уподобляя движения молекулы жидкости колебаниям маятника, необходимо предположить, что и подвес маятника, вместо «оседлого» образа жизни, то и дело кочует с одного места на другое. В течение периода «оседлой жизни» молекула колеблется внутри ячейки. В период «кочевья» она перебирается в соседнюю ячейку. За время, которое частица проводит в какой-либо ячейке, она успевает совершить большое число колебаний.

Однако если температура жидкости будет увеличиваться, молекулы станут все чаще и чаще кочевать из одной ячейки в другую. Тем самым время их «оседлой жизни» уменьшится, и сам характер движения будет все более напоминать движение молекул газа.

Почему же поверхность спокойной жидкости представляется нам неподвижной, почему мы не замечаем непрерывного дрожания молекул?

Еще Ломоносов в одном из своих сочинений писал: «Ведь нельзя отрицать существование движения там, где его не видно: кто, в самом деле, будет отрицать, что когда через лес проносится сильный ветер, то листья и сучки дерев колышутся, хотя бы при рассматривании издали глаз не видел движения. Точно так же, как здесь вследствие расстояния, так и в теплых телах вследствие малости частиц движущейся материи, колебание ускользает от взора».

И в самом деле. Посмотрите на лезвие безопасной бритвы. Каким ровным и гладким оно нам представляется. А теперь взгляните на рисунок 21.

На нем изображен маленький участок того же лезвия, каким он виден в электронный микроскоп. А ведь обычные по своим размерам молекулы и в электронный микроскоп не видны. Неудивительно, что тепловое движение молекул нельзя увидеть.

Рис. 21. Так выглядит маленький участок лезвия безопасной бритвы под электронным микроскопом.

Какую же скорость имеют молекулы жидкости?

Оказывается, что средняя скорость теплового движения молекул жидкости такая же, как и у газа, молекулы которого имеют тот же вес, взятого при той же температуре. И так же, как и у газов, у жидкостей скорость беспорядочного движения молекул растет с ростом температуры.

Таким образом, тепловое движение молекул жидкости, особенно при высокой температуре, имеет черты сходства с движением молекул газа, не исключающие, однако, существенного различия. Это различие еще более усугубится, если учесть, что полная беспорядочность в расположении молекул, характеризующая газ, сменяется у жидкостей некоторой упорядоченностью. Если мысленно выделить, отметить каким-либо способом одну из молекул жидкости, то окажется, что ближайшая к ней молекула будет всегда находиться на совершенно определенном расстоянии от нее и это расстояние одинаково для всех окружающих ее молекул.

Это уже элемент порядка!

Примечательно, что упорядоченность в расположении частиц жидкости ограничивается только ближайшим окружением выбранной молекулы. Положение молекул, следующих за ближайшими соседями отмеченной молекулы, уже не будет так точно определенно, как положение ее непосредственных соседей.

Здесь возможны некоторые отступления: в одном опыте вторая молекула встретится ближе, в другом дальше, чем ей надлежало бы быть. Еще менее определенно положение третьей молекулы. По мере удаления от исходной молекулы порядок в расположении частиц быстро исчезает. Про жидкость говорят, что в ней существует ближний порядок в расположении молекул.

Может возникнуть вопрос: каким образом упорядоченное расположение частиц вблизи любой произвольно выбранной молекулы сочетается с хаотичным расположением вдали от нее? Ведь казалось бы, что, переходя от выбранной молекулы к соседней, а от той к следующей и продолжая подобный переход все дальше и дальше, можно пройти через всю жидкость. И если всякий раз вблизи молекулы будет наблюдаться упорядоченное расположение ее соседей, то как будто бы эта упорядоченность должна охватывать всю жидкость. Но в действительности это не так. Понять это помогает рисунок 22, на котором показано, как можно представить себе расположение молекул в жидкости.