Различные жидкости имеют и различную скрытую теплоту испарения; для испарения одного грамма спирта требуется иное количество тепла, чем для испарения такого же количества керосина или эфира.
Особенно велика скрытая теплота испарения воды. Количеством теплоты, необходимым для того, чтобы превратить в пар один грамм воды, можно было бы нагреть пять с половиной граммов воды от нуля градусов до кипения.
Конечно, скрытая теплота испарения не исчезает бесследно. Она выделяется вновь при превращении пара в жидкость. Этим широко пользуются в технике при устройстве различных нагревателей.
На рисунке 40, а изображен нагреватель, в котором обогревающий пар поступает в змеевик, конденсируется в нем, а выделяющаяся скрытая теплота парообразования нагревает окружающую змеевик жидкость.
Конструкции нагревателей очень разнообразны. Так, например, холодную жидкость можно поместить в сосуд, окруженный «паровой рубашкой» (рис. 40, б).
Рис. 40. Паровые нагреватели: а — змеевик, б — «паровая рубашка».
Омывая холодные стенки сосуда, пар здесь также превращается в жидкость, выделяя необходимое для нагревания тепло. В одних случаях более целесообразна одна конструкция нагревателя, в других — другая. Ценным качеством парового обогрева является автоматическая регулировка наибольшей температуры, достижимой в нагревателе. Совершенно ясно, что конденсирующимся водяным паром нельзя нагреть жидкость больше, чем до температуры кипения воды, так как в этом случае образовавшаяся вода вновь будет превращаться в пар, забирая на это тепло, выделяемое при конденсации.
Охлаждение жидкости при испарении используется при устройстве холодильных машин.
Испарение воды играет огромную роль в жизни природы.
Мы уже говорили, как много испаряется воды с поверхности земли. Из общего количества испарившейся влаги почти девять десятых приходится на моря и океаны. На этот процесс тратится гигантское количество солнечной энергии, которая как бы запасается «впрок» в земной атмосфере.
Понятно, что в жарких странах вблизи экватора испаряется гораздо больше влаги, чем в странах с умеренным или холодным климатом. Испарение с морской поверхности смягчает климат приморских стран. Смягчающее влияние моря приводит к тому, что разница между средними летними и зимними температурами вблизи моря меньше, чем вдали от него. Действительно, в Сочи, например, эта разница составляет 17,5 градуса, а в Москве около 30 градусов. Испарившиеся вблизи экватора массы воды вместе с воздушными потоками распространяются над поверхностью земли. Попав в более холодные области, пары начинают конденсироваться, отдавая воздуху тепло, захваченное на экваторе.
Так в природе в гигантских масштабах осуществляется выравнивание температуры, которое в наше время еще не под силу человеку.
Подвижное равновесие
Одним из подвигов легендарного римского героя Геркулеса была битва с лернейской гидрой. Трудно было победить сказочное чудовище. Девять голов имела гидра, и на месте каждой отрубленной головы вырастали тотчас же две новые.
Стремление человека познать окружающий мир, вырвать у природы ее тайны до некоторой степени напоминает этот поединок Геркулеса. Найденный ответ на какой-либо вопрос, расширяя наши знания о природе, тотчас же вызывает к жизни новые вопросы, так же настоятельно требующие объяснения, как и первый.
Яркий пример этого непосредственно перед глазами: движение молекул позволило понять, почему жидкость испаряется, но сейчас же возник вопрос, почему в бутылке, наполовину наполненной водой и плотно закрытой пробкой, вода не превращается целиком в пар, даже если бутылку поставить в теплое место.
Означает ли это, что молекулы жидкости потеряли способность отрываться от поверхности и переходить в пар? Нет, конечно. Быстро движущиеся частицы жидкости по-прежнему покидают ее, но только теперь этот процесс компенсируется встречным — переходом молекул пара в жидкость, или, как говорят, конденсацией пара.
Постараемся лучше понять происходящее явление.
Как мы знаем, молекулы жидкости сравнительно редко отрываются от ее поверхности. Это удается примерно только одной из тысячи частиц, пытающихся покинуть жидкость. Девятьсот девяносто девять остальных возвратятся обратно, — их остановит притяжение соседей.
Молекулы пара, двигаясь беспорядочно, так же как и молекулы жидкости, ударяются о ее поверхность. Внешне оба явления весьма сходны, но достаточно внимательно присмотреться к ним, чтобы заметить существенное различие.
Предположим, что одна из частиц пара приближается к поверхности жидкости. Молекул пара, стремящихся удержать ее, немного. Когда частица достигнет поверхности, притяжение молекул жидкости будет гораздо больше, чем притяжение молекул пара. Если только поверхность жидкости ничем не загрязнена, то практически каждый удар частицы пара о поверхность сопровождается переходом ее в жидкость. Когда жидкость только что налита в какой-либо сосуд и последний плотно закрыт, то первоначально в парообразном состоянии молекул немного и покидает жидкость больше частиц, чем приходит за то же самое время из части сосуда, наполненной паром, — жидкость испаряется.
По мере испарения число молекул в парообразном состоянии увеличивается, а одновременно растет и число ударов их о поверхность жидкости: скорость конденсации возрастает.
Скорость же испарения, если температура жидкости не изменяется, остается постоянной, и совершенно ясно, что рано или поздно скорость конденсации, возрастая, сделается равной скорости испарения. В каждое мгновение жидкость будет терять столько же частиц, сколько поступает в нее из пара. Испарение как бы прекратится.
Теперь становится понятным и то, почему плотность жидкости всегда значительно больше плотности ее пара.
Для того чтобы число испаряющихся молекул сделалось равным числу конденсирующихся, необходимо, чтобы в каждое мгновение о поверхность, разделяющую жидкость и пар, ударялось гораздо больше частиц жидкого вещества, чем парообразного. А так может обстоять дело только в том случае, если плотность пара много меньше плотности жидкости. Равновесие наступает тогда, когда между плотностями пара и жидкости устанавливается определенное соотношение. Это соотношение изменяется при изменении температуры; при каждой температуре для каждой жидкости оно имеет определенную величину. Иными словами, испарение жидкости в закрытом сосуде продолжается до тех пор, пока не установится определенное давление пара, при котором скорости испарения и конденсации выравниваются.
Обычно испарение происходит только с поверхности жидкости, но при некоторых условиях пузырьки пара образуются и внутри нее. Это наблюдается при такой температуре, когда давление пара жидкости делается равным атмосферному давлению. Температуру, при которой происходит образование пузырьков пара внутри жидкости, называют температурой кипения, а само явление — кипением.
Каждое вещество имеет свою собственную температуру кипения. Температура кипения воды при нормальном давлении принята за 100 градусов. Эфир кипит при 34,6 градуса, спирт — при 78,3 градуса, ртуть — при 357 градусах.
Когда жидкость кипит, температура ее остается постоянной до тех пор, пока вся она не испарится.
На практике часто наблюдается задержка в возникновении кипения, когда необходимая температура уже достигнута, а жидкость не кипит. Такая жидкость называется перегретой. Перегретая жидкость неустойчива: спустя некоторое время она бурно вскипает, — жидкость толчком подбрасывается вверх.