Та картина Вселенной, которую мы здесь описываем, представляет собой расширяющийся рой галактик. До сих пор свет играл для нас лишь роль «звездного посланца», несущего информацию о галактических расстояниях и скоростях. Однако в ранней Вселенной были совсем другие условия; как мы увидим, именно свет был главной составной частью Вселенной, а обычное вещество играло роль пренебрежимо малой примеси. Поэтому позднее нам пригодится, если сейчас мы повторим, что мы узнали о красном смещении в терминах поведения световых волн в расширяющейся Вселенной.
Рассмотрим световую волну, распространяющуюся между двумя типичными галактиками. Расстояние между галактиками равно времени распространения света, умноженному на скорость света, а увеличение этого расстояния за время путешествия света равно времени распространения света, умноженному на относительную скорость галактик. Когда мы вычисляем относительный рост взаимного расстояния, мы делим увеличение расстояния на среднее значение этого расстояния за время увеличения и находим, что при этом время распространения света сокращается: относительное увеличение расстояния между этими двумя галактиками (а следовательно, между любыми другими типичными галактиками) за время распространения света есть просто отношение относительной скорости галактик к скорости света. Но как мы видели раньше, это же отношение определяет относительное увеличение длины волны света за время его путешествия. Таким образом, в процессе расширения Вселенной длина волны любого луча света просто увеличивается пропорционально взаимному расстоянию между типичными галактиками. Можно представлять себе это так, будто гребни волн в процессе расширения Вселенной все дальше и дальше «растаскиваются» друг от друга. Хотя, строго говоря, наша аргументация справедлива только для малого времени распространения, но, соединяя последовательность таких небольших путешествий в одно целое, мы вправе заключить, что вывод верен и в общем случае. Например, когда мы смотрим на галактику ЗС295 и обнаруживаем, что длины волн в ее спектре на 46 процентов больше, чем в наших стандартных таблицах спектральных линий, мы можем заключить, что Вселенная сейчас на 46 процентов больше по размеру, чем она была тогда, когда свет покинул ЗС295.
До этого момента мы сосредоточивали внимание на вопросах, которые физики называют кинематическими и которые связаны с описанием движения без какого-либо рассмотрения сил, управляющих этим движением. Однако в течение столетий физики и астрономы пытались понять динамику Вселенной. Неизбежно это привело к изучению космологической роли той единственной силы, которая действует между астрономическим телами, — силы тяготения.
Как и следовало ожидать, первым, кто вступил в схватку с этой проблемой, был Исаак Ньютон. В знаменитой переписке с кембриджским филологом Ричардом Бентли Ньютон утверждал, что если бы материя Вселенной была равномерно распределена в конечной области, то она вся должна была бы стремиться упасть к центру «и в результате образовалась бы одна большая сферическая масса». Напротив, если бы материя была равномерно рассеяна в бесконечном пространстве, то не было бы центра, к которому она могла бы падать. В этом случае материя могла бы соединяться в бесконечное число сгустков, рассеянных по Вселенной; Ньютон предположил, что именно это могло быть причиной происхождения Солнца и звезд.
Трудность рассмотрения вопросов динамики бесконечной среды[11] в значительной степени парализовала дальнейший прогресс вплоть до появления общей теории относительности. Здесь не место объяснять эту теорию, во всяком случае, оказалось, что она менее важна для космологии, чем думали первоначально. Достаточно сказать, что Альберт Эйнштейн использовал существующую математическую теорию неевклидовой геометрии для того, чтобы объяснить тяготение как эффект искривления пространства и времени. В 1917 году, через год после завершения общей теории относительности, Эйнштейн попытался найти решение своих уравнений, которое описывало бы пространственно-временную геометрию Вселенной в целом. Следуя имевшим тогда хождение космологическим идеям, Эйнштейн специально искал решение, которое было бы однородным, изотропным и, к сожалению, статичным. Однако такого решения найти не удалось. Чтобы построить модель, удовлетворявшую указанным предварительным космологическим требованиям, Эйнштейн вынужден был «изуродовать» свои уравнения введением члена, так называемой космологической постоянной, который сильно портил элегантность первоначальной теории, но мог служить для уравновешивания силы гравитационного притяжения на больших расстояниях.