Выбрать главу

The same is true for other complex projects such as housing developments, where the cost of land and infrastructure improvement, along with building construction costs, and cost of financing (and therefore necessary speed of construction) all interact with likely sales price to help make the architect a tool of the developer and the developer’s banker, who turn out to have the most control over the form of the development.

With these kinds of projects, that make up the preponderance of what is built today, the architect looks very much like an engineer. S/he is optimizing well-defined quantitative variables, that are often connected to money, and the evaluation of the product depends on how well this optimization has taken place.

And the engineer, at least the nineteenth-century engineer, had some of the qualities of the architect.

The pre-twentieth century architect and engineer came out of similar worlds. James Watt, the inventor of the steam engine, grew up in a family of craftsmen and apprenticed himself to an instrument maker in London. He was thoroughly immersed in the world of physical things, and this immersion was critical to his success as an engineer. (Dickinson, 1935) Robert Stephenson, the great railroad engineer, came out of a mining community, and a family deeply involved in mining operations. (Bailey, 2003) Indeed, the culture of eighteenth and early nineteenth century Britain was one in which the professions were closely tied to the trades, and in which the trades were close to the everyday life of many people.

The nineteenth century engineer, like the architect, was able to think intuitively and not only quantitatively. There is little doubt that architects and engineers may both work in ways in which the design process is a cyclical one, in which conjectures are made, tested and refined. A biographer of the great British engineer Isambard Kingdom Brunel quotes his wariness of “mathematical calculations, dependent as they are upon an unattained precision, which are likely to lead far from the truth as not. By the same mode of calculation did Dr. Lardner arrive at all those results regarding steam navigation and the speed on railways which have since proved so erroneous.” (Vaughan, 1991)

Some of the diary entries of Robert Stephenson, inventor of the steam locomotive, also point to the use of intuition in the design process.

I have just received the model and like the idea exceedingly, but I fear the truth of the motion is rather questionable, although it may not perhaps be to such an extent as to render it useful.

I shall have the accuracy of it tested before I reach Ncastle - On the first blush it is very satisfactory and I sincerely hope a more mature investigation will prove equally so. -

My impression is that at certain parts of the stroke the motion of the slide valve will be backwards instead of forwards and vice versa. - I think it can hardly be otherwise and the working of the model supports this opinion, but it is so small that no detailed conclusion can be drawn from it - I should wish a full sized model to be made for that alone can decide the point - If it answers it will be worth a jew’s eye and the contriver. (Bailey, 2003)

In this case Stephenson is acting rather like an architect, who is making a tentative conjecture, but withholding judgment until that conjecture is further tested with a more detailed investigation. It is common practice in architecture to shift scales, as Stephenson was suggesting, to test a proposed design.

The architect is however, working with a single artifact that may take months or years to make, and the engineer is either doing the same thing, as with a bridge or tunnel, or designing the prototype for an artifact that may be mass-produced. In the latter case, there is no question of design and construction being intertwined, nor is there the possibility of an imprecise specification of the object, as there might be with a building. The architect’s ability to apply intuitive judgment in the design of the artifact itself is not shared by the engineer. What the engineer is doing that is similar to the architect is applying intuitive judgment to the design of the prototype or process.

Conventional wisdom sees architecture as an artistic pursuit, and engineering as a mathematical/technical one. Both professions involve design. I have argued above that normative architecture has become less “artistic” than it might appear. As a process or mode of activity, architecture and engineering are not diametrically opposed. The architect, working to a large extent within a technological system that is highly constraining to artistic pursuit, needs to adopt some of the stance of the engineer who is working to pre-specified, quantitative goals. And the engineer, although s/he is working within definable, quantitative constraints, is a designer, and may be applying the intuition of the artist. The architect and engineer are designing different classes of objects, and perhaps see the balance between the objective and the intuitive differently in their own work, but are in fact at different points within the same range of activities. Where the idealized social models of the architect and the engineer are very different, and represent the competing values of artistic production versus efficient production, in practice the normative practice of architecture and engineering are more similar than different.

4 Architecture as a Modern Process

The architectural profession has changed dramatically since the nineteenth century. One way of describing this change is that the intuitive, “artistic” side, and the objective, “technological” side, have grown further and further apart. One reason this happened is that industrialization resulted in both the formalization of professions and the decline of craft traditions. This meant that the architect was put in the position of controlling the work of craftsmen who heretofore were not subject to such control, and these craftsmen were themselves disappearing, turning into construction workers who were taking someone else’s orders. By converting skilled craftsmen into wage laborers, capital could more directly control the process.

I speculate that the design language within modern architecture that is often called the “International Style” - a language characterized by industrial components, simple details, and lack of ornament - was not only an artistic or social movement. It arose partly because the architect could not maintain control over the production of buildings that required details that could only be produced well through traditional craftsmanship. Since the culture of traditional craftsmanship was fast disappearing, the only way the architect could maintain control was through the development of a style that much better allowed for “control at a distance” than historical styles. The buildings that prevailed throughout most of the twentieth century are as much the result of a particular mode of architectural production as they are of aesthetic preference or social demand. This is of course connected to the industrial production of buildings, but the critical point here is that the imperative of building in this way may have come at least partly through the constraints of time and efficiency that were being felt in practice.

In the early 1890s, the prominent New York firm of McKim Mead and White designed a building called the Metropolitan Club on the upper East Side of Manhattan, at Fifth Avenue and 60th Street. McKim Mead and White were New York’s most prominent practitioners of the Beaux-Arts style, an interpretation of classical architecture that seemed particularly suited for the new moneyed elite of New York, who built banks, houses, and rich men’s clubs like the Metropolitan Club. The documents connected with the construction of this building are now housed at the New-York Historical Society. These documents include letters, contracts, estimates, bids, and communications of all kinds between the architects, and their clients, suppliers, builders, contractors and other players.