Выбрать главу

This is no longer the case for the design of socio-technical systems. If engineers recognize the social dimensions of their practice they may also be in a position to negotiate better among stakeholders on the parameters of individual design problems and the ethical and social dimensions of these problems. As suggested in the New Orleans example, the acceptance by engineers of this role will require that they free themselves from a position of only taking orders from employers. From a traditional engineering ethics perspective this alternative approach raises the problem of “many hands.” Is it still possible, if so many stakeholders are involved in defining and solving design problems, to allocate specific responsibilities to the engineers involved when things go wrong? Perhaps or perhaps not. But because of the scale and complexity of many design problems today such a problem cannot be avoided.

3.2 Design Limits

Our second observation, related to the first, concerns the limits of design. Material systems may in principle be designed from the point of view of total design control, along the lines indicated above. For socio-technical systems this is problematic, if not impossible, because the behavior of the agents within the system is generally unpredictable. This is also a well-known aspect of architectural design. Agents that are part of socio-technical systems may redesign parts of the system from within in unforeseen ways.14 As such, there may be no single vantage point from which complex systems can be designed and controlled. Moreover, if some agents within a system try to change parts of it in predictable ways, the total effect of all these changes at the system level may be unintended and unpredictable. In part this may be due to the complexity of socio-technical systems. Some critics even argue that such systems exhibit a kind of emergent behavior.

A concrete example of this phenomenon is Wikipedia, an on-line, free and “open source” encyclopedia that is edited by its users. Although this reference tool was created by the few individuals who comprise the not-for-profit Wikimedia Foundation in 2001, responsibility for the content of the encyclopedia rests with the community of users who claim that the interests of human knowledge are best served by the diffusion of responsibility. If true, such properties will raise even more problems regarding the moral and social responsibilities of engineers who participate in such open source systems. Who is morally responsible or politically accountable for negative effects related to the emergent behavior of complex socio-technical systems? Current theories in ethics, with its traditional focus on individual responsibility, may not be suited to deal adequately with such questions. Several new developments in STS and engineering ethics may provide some avenues to address these concerns, which brings us to our third observation.

3.3 Engineering Ethics

Three new developments in engineering ethics, if successfully prosecuted, could help to push the scope of responsibility in engineering design closer to architecture. First, Deborah Johnson and Jameson Wetmore (2007) have suggested that a fruitful starting point for such an engineering ethics can be found in combining STS with practical ethics. They observe that until now thinking in engineering ethics has been based on a separation of technology from its social context and on the idea that technological practices are free from social, political, and cultural values. According to them engineering ethics has mainly addressed the business context of engineering. They identify three core ideas in the STS literature that can transform engineering ethics so that it can more adequately deal with the sort of problems we have been raising:

1. The claim that technology and society co-determine each other which produces a weak form of technological determinism.

2. The long recognized observation in STS of the “socio-technical” nature of all technology.

3. The argument that technological expertise does not derive from value-free knowledge alone, but is partly constituted by social factors.

The claim is that the integration of these core ideas in engineering ethics will allow the field to critique more soundly the claim that technological design is morally value neutral.

A second new approach in engineering ethics is “value-sensitive-design.”8 This approach agrees with the idea that socio-technical systems are the primary unit of analysis in engineering ethics. Socio-technical systems are by definition value-laden systems and designing such systems is, by definition, a value-laden activity. Value-sensitive-design would explore the consequences of this recognition for engineers. It takes as its starting point the idea that it is possible to pro-actively design social and moral values into technological hardware, for example, designing communication devices so that they safeguard the value of privacy. Such ideas may be familiar in architectural practice but they are relatively new in many engineering domains. One ironic example is the design of household heating appliances in Sweden documented by the social anthropologist Annette Henning. In order to realize the national goal of using more renewable resources for home heating in lieu of imported oil, the Swedish government collaborated with industry engineers to design bio-pellet burning stoves and furnaces. Much to the disappointment of all parties, however, this campaign for technological change proved to be unsuccessful because the appliances proved inconsistent with cultural “perceptions of house and home, of private and public space, and male and female space.” In response to Henning’s findings, the editors of the volume in which this study appears note that “Knowing how to design a heating system that will work mechanically is quite different from knowing how to design a system that users perceive as responsive to their domestic practices and values.”9

A third new approach for engineering ethics could be derived from recent developments in architectural practice itself. Earlier we briefly discussed the need for the justification of whistleblowers in engineering to unmask design practices that, in the name of efficiency, may ultimately prove to be harmful to citizens or the environment. In this context we can understand a whistleblower as a member of a system but also a citizen of the society served. Part of the recognition of the whistleblower is that citizenship demands a higher order of loyalty than membership of a government agency or firm.

In the world of architecture some have likened Prince Charles to a kind of whistleblower at least in the sense that his activism in the preservation of historic architecture and urban patterns answers to a larger sense of responsibility to the public. But, as the Prince of Wales, Charles is both more than a citizen and less than a participant. He is a privileged observer of the system from the outside. The phenomenon of the “citizen-architect” may, then, provide a better exemplar for engineering practice. In Germany, Peter Hubner; in England, Rodney Hatch; and in the United States, the late Samuel Mockbee (of the Rural Studio), Sergio Palleroni (of the BaSiC Initiative), and Brian Bell (of Design Corps) are such citizen-architects who are engaged in what they call “community design.” These design practitioners argue that their authority to design public facilities derives not from their status as licensed professionals but from the local communities in which they build. Rather than resent the eclipse of artistic autonomy that accompanies community design, these designers tend to see expressions of local values as the source of creativity, not its suppression. Design, in their view, is an inclusive social process in which people decide how they want to live - it is not an autonomous process in which experts define problems and hand down answers from above. These practitioners are not simply populist order-takers committed to turning technocratic hierarchies upside down. Rather, they are highly skilled architects who hold that design excellence depends upon the creative synergy between the abstract knowledge of the expert and the local knowledge of the user. At its best, value-sensitive-design is not simply the accommodation of local values in the designers’ vision of the future, but a transactional process in which designers and citizens depend upon each others’ knowledge in the production of a better world.

вернуться

8

Friedman (1997).

вернуться

9

See Henning (2005).