Рис. 2.4. Совместное использование шины
Интегральные микросхемы, содержащие до 12 логических элементов, относятся к микросхемам малой степени интеграции. Если в корпусе микросхемы содержится до 100 логических элементов, то она относится к классу микросхем средней степени интеграции; до 1000 — к классу больших интегральных схем или, сокращенно, БИС. Все микросхемы, имеющие более 1000 логических элементов, относятся к классу сверхбольших интегральных схем (СБИС). К последнему классу, в частности, относятся микросхемы памяти и микроконтроллеры.
Изображенные на Рис. 2.5 микросхемы, содержащие определенным образом соединенные элементы И-НЕ, являются типичным примером интегральных микросхем средней степени интеграции. Если вспомнить, что на выходе элемента И-НЕ лог. 0 присутствует только в том случае, если на всех его входах присутствует лог. 1 (см. Рис. 1.2, в на стр. 27), то можно увидеть, что при любых сочетаниях сигналов на входах выборки В А (21 20) (Рис. 2.5, а) сигнал лог. 0 будет присутствовать на выходе только одного вентиля. Так, выход Y¯2 будет активным при В А = 10. После рассмотрения таблицы истинности становится понятно, что данная схема декодирует двоичный адрес В А таким образом, что при подаче адреса n становится активным выход Y¯n. Полностью название микросхемы 74LS139[29] звучит так: сдвоенный натуральный дешифратор 2 на 4. Сдвоенным он называется потому, что в одном корпусе расположены две такие схемы. Символ X/Y обозначает преобразование кода X (натуральное двоичное число) в код Y (унарный — один из n). Вход разрешения G¯ подключен параллельно ко всем элементам. Таким образом, дешифратор выполняет свои функции только в том случае, если на входе G¯ присутствует НИЗКИЙ уровень (лог. 0). Если на входе G¯ присутствует ВЫСОКИЙ уровень, то независимо от состояния входов В и А (в таблице истинности эта ситуация обозначается символом «X» — безразличное состояние) все выходы устанавливаются в неактивное состояние (лог. 1). Пример использования микросхемы 74LS139 приведен на Рис. 2.25 (стр. 54).
Рис. 2.5. Микросхемы дешифраторов 74LS138 (К555ИД7) и 74LS139 (К531ИД14)
Микросхема 74LS138[30], показанная на Рис. 2.5, б, похожа на только что рассмотренную, однако выполняет функцию дешифратора 3 на 8. При n-м значении на линиях адреса C B А (22 21 20) активным становится только один из восьми выходов Y¯n. Микросхема 74LS138 имеет три входа стробирования, формирующие внутренний сигнал разрешения . То есть функционирование микросхемы разрешено только в том случае, если на обоих входах и присутствует НИЗКИЙ уровень, а на входе G1 — ВЫСОКИЙ. Микросхема 74LS138 используется в схеме на Рис. 11.12 (стр. 350) в качестве дешифратора линий порта микроконтроллера для подключения к одному порту нескольких устройств.
Приоритетный шифратор 74LS148[31], показанный на Рис. 2.6, выполняет обратное преобразование. Подача на один из входов НИЗКОГО уровня вызывает появление на выходе эквивалентного 3-битного значения. Так, если вход 5¯ = 0, то а¯2а¯1а¯0 = 010 (число 101 в инверсной логике).
Рис. 2.6. Микросхема приоритетного шифратора 74LS148
Если активный сигнал присутствует на нескольких входах, то выходное значение соответствует входу с наибольшим номером. Так, если НИЗКИЙ уровень присутствует на обоих входах 5¯ и 3¯, то выходное значение все равно будет составлять 010. Символы HPRI на условном обозначении микросхемы, приведенной на Рис. 2.6, означают «наивысший приоритет» (Higest PRIority). Работа микросхемы разрешается при НИЗКОМ уровне на входе E¯in. Выходы E¯out и G¯S¯ используются при каскадном соединении микросхем для увеличения количества линий.
Большой класс ИС реализует различные арифметические операции. Матрица логических элементов, показанная на Рис. 2.7, используется для обнаружения равенства между двумя 8-битными числами Р и Q. Каждый из восьми элементов Исключающее ИЛИ-HE формирует лог. 1, если оба входных бита Рn и Qn одинаковы (мы уже встречались с этим элементом на стр. 28). Соответственно, НИЗКИЙ уровень на выходе элемента И-НЕ появится только в том случае, если все 8 пар битов одинаковы. Микросхема компаратора 74LS688 имеет также вход G¯, сигнал с которого подается на один из входов элемента И-НЕ и выполняет функцию глобального разрешения.