Выбрать главу

Рис. 2.11. Реализация 1-битного сумматора на ПЗУ

Диодная матрица, показанная на Рис. 2.11, называется постоянным запоминающим устройством (ПЗУ), поскольку «память» представляет собой комбинацию диодов, формируемую на этапе изготовления микросхемы. Старые устройства, имевшие, как правило, дешифратор и матрицу 32х8, обычно выпускались в версиях, программируемых пользователем, в которых связи формировались плавкими перемычками. Требуемые диоды можно было исключить из матрицы при помощи высокого напряжения. Такие устройства называются программируемыми ПЗУ (ППЗУ).

При реализации СБИС ППЗУ больших объемов, необходимых для хранения программ, плавкие перемычки очень неудобны. Например, небольшое ППЗУ 27С64[33], показанное на Рис. 2.12, имеет объем, для формирования которого потребовалось бы 65 536 пар «перемычка — диод». То есть это относительно небольшое устройство способно хранить 8192 байта данных. В микросхеме 27С64 в качестве программируемой перемычки используется электрический заряд на плавающем затворе МОП-транзистора. Второй МОП-транзистор выполняет роль диода. Как и в варианте с плавкими перемычками, инжекция заряда в изолированный затвор осуществляется с помощью высокого напряжения. Образующееся электрическое поле удерживает МОП-транзистор в состоянии проводимости. Для полного рассасывания этого заряда требуется достаточно длительный срок в несколько десятков лет, однако это значение можно уменьшить до 20 мин, подвергая затвор интенсивному ультрафиолетовому излучению. Поэтому устройства, подобные 27С64, называют стираемым ППЗУ (СППЗУ). В корпусе микросхем, предусматривающих многократное использование, напротив кристалла размещается кварцевое окошко (см. Рис. 2.12), которое можно увидеть на фотографии, приведенной на стр. 15.

Рис. 2.12. Микросхема стираемого ППЗУ (СППЗУ) 27С64 (К573РФ4/6)

Программирование таких микросхем осуществляется специальными устройствами — программаторами. Версии микросхем без окошка называются однократно-программируемыми ПЗУ, поскольку их нельзя стереть после программирования. Однако они намного дешевле и поэтому используются в мелко- и среднесерийном производстве.

На Рис. 2.13 приведена упрощенная схема перемычки на МОП-транзисторе с плавающим затвором. Вместо диода узлом матрицы является n-канальный МОП-транзистор VT1. Затвор этого транзистора подключен к линии X, а его исток S1 — к линии Y. Если сток D1 транзистора подключен к источнику положительного напряжения и выбрана линия X, то на линии Y тоже появляется ВЫСОКИЙ уровень (лог. 1 в терминах положительной логики). Однако если VT1 отключен от VDD, то он не проводит ток, и на линии Y присутствует лог. 0. Транзистор VT2 включается последовательно с линией VDD и, таким образом, выполняет роль программируемого элемента. Этот транзистор имеет дополнительный, никуда не подключенный затвор, скрытый в слое изолирующего диоксида кремния. В нормальном состоянии заряд на затворе отсутствует, и транзистор VT2 закрыт. Если на затвор подать импульс напряжения программирования величиной 20…25 В, то отрицательные заряды туннелируются через очень тонкий слой изолятора, окружающий скрытый затвор. В результате транзистор VT2 перейдет в открытое состояние и таким образом подключит VT1 к шине питания. Это приведет к появлению лог. 1 на линии Y при выборе данной ячейки внутренним дешифратором.

Рис. 2.13. Перемычка на МОП-транзисторе с плавающим затвором

Величина инжектированного заряда остается более или менее постоянной до тех пор, пока затвор не будет подвергнут ультрафиолетовому облучению. Фотоны, обладающие большой энергией, выбивают электроны (отрицательный заряд) из скрытого (плавающего) затвора[34], за 20 мин разряжая его и стирая всю записанную информацию.

вернуться

33

Отечественный аналог — микросхемы К573РФ4 и К573РФ6. — Примеч. пер.

вернуться

34

Это явление называется эффектом Эйнштейна. Эйнштейн получил Нобелевскую премию именно за открытие и исследование этого явления, а вовсе не за свою теорию относительности, поскольку она была сочтена слишком революционной для того времени!