Используя этот 11-битный адрес, можно непосредственно адресовать любую команду в памяти программ объемом до 211 = 2 Кбайт. Однако в микроконтроллерах среднего уровня реализован 13-битный счетчик, который может адресовать память данных объемом до 8 Кбайт (память такого объема имеется, например, в модели PIC16F877). Для разрешения этой ситуации при выполнении команд goto и call абсолютный 11-битный адрес объединяется с битами 4:3 регистра защелки PCLATH, формируя таким образом полный 13-битный адрес, загружаемый в счетчик команд. Этот процесс показан на Рис. 5.1 (см. также Рис. 4.8 на стр. 103).
Рис. 5.1. Формирование 13-битного адреса памяти программ из 11-битного абсолютного адреса, передаваемого при вызове команд goto и call
При сбросе по включению питания регистр PCLATH сбрасывается, так что непосредственная область действия команды goto составляет h’000’…h’7FF’. Это соответствует диапазону адресов памяти программ объемом 2 Кбайт, имеющейся, например, в микроконтроллере PIC16F628. В моделях с большим объемом памяти программ необходимо использовать дальние переходы и вызовы (т. е. за пределы h’7FF’), используя биты PCLATH[4:3]. Например, в микроконтроллере PIC16F877 переход к адресу h’F00’ должен быть реализован следующим образом:
bsf PCALTH,3; Запишем в PCALTH[4:3] =11
bsf PCLATH,4;
goto h’F00’; Перейдем к требуемому адресу!
Обратите внимание, что после изменения этих битов они остаются в данном состоянии до следующего изменения, поэтому необходимо быть внимательным при переносе такого кода на процессор с памятью программ больше 2 Кбайт[81].
Большинство данных, используемых программой, размещаются в памяти данных. Соответственно, этот режим адресации используют команды, в которых источник и/или адресат находятся в регистрах памяти данных. Адрес регистра содержится в семи младших битах кода команды (обозначенных как fffffff). Например, код команды addwf h’26’,f (сложить содержимое рабочего регистра с регистром данных h’26’ и поместить результат обратно в регистр данных, или, коротко, [f] <- [f] + [W]) выглядит как Ь’00011110100110’.
Большинство команд, использующих прямую адресацию, могут пересылать результат либо в рабочий регистр, либо обратно в регистр данных. Бит 7 кода команды, помеченный как d (см. также Рис. 3.5 на стр. 68), используется для указания адресата, как в следующем примере:
addwf h’26’,w; Код команды — 00 0111 0 0100110
addwf h’26’,f ; Код команды — 00 0111 1 0100110
В обоих случаях содержимое регистра с адресом h’26’ прибавляется к содержимому рабочего регистра. В первом случае, приведенном на Рис. 5.2, а, результат помещается в рабочий регистр, оставляя содержимое регистра данных неизменным (d = 0), тогда как во втором случае, показанном на Рис. 5.2, б, исходное содержимое регистра данных замещается (d = 1) итоговой суммой.
Как мы увидим далее (см., например, Табл. 5.2), большинство команд используют непосредственную адресацию. Однако у этого метода адресации есть два ограничения, которые программист должен иметь в виду.
Всего 7 бит
Под адрес регистра данных в коде команды среднего семейства отведено всего семь битов, соответственно, используя прямую адресацию, можно обращаться только к регистрам из диапазона h’00’…h’7F’. Из Рис. 4.7 (стр. 97), а также Рис. 5.3 видно, что для обхода этого ограничения в микроконтроллере PIC16F84 в качестве суррогатного старшего бита адреса используется 5-й бит (RP0) регистра STATUS. В результате память разбивается на два банка регистров, каждый объемом до 27 = 128 регистров. Для переключения между 0-м (RP0 = 0) и 1-м (RPO = 1) банками этот бит управления страницами, расположенный в 5-м бите регистра STATUS (Рис. 4.6 на стр. 95), можно менять точно так же, как и любой другой бит регистра данных.
Рис. 5.2. Выбор операнда-результата в команде addwf h’26’
Особенность модели PIC16F84 заключается в том, что в ней имеется всего два банка памяти. Большинство микроконтроллеров среднего уровня имеют 4 банка памяти. В качестве примера можно назвать микроконтроллер PIC16F627/8 (усовершенствованный PIC16F84), структура памяти данных которого приведена на Рис. 5.4. Чтобы иметь возможность переключаться на любой банк памяти, требуется уже два бита управления страницами, показанных на Рис. 5.5. Эти два бита RP1:RP0, выделенные на рисунке серым цветом, обнуляются при сбросе любого типа, т. е. после сброса мы всегда работаем с 0-м банком памяти. Поэтому программист должен соответствующим образом изменить эти биты, если он хочет обратиться к регистру, находящемуся в другом банке. Например, если необходимо скопировать содержимое регистра h’120’, расположенного во втором банке, в рабочий регистр и переключиться обратно на 0-й банк, мы должны написать:
81
Например, если осуществляется перенос работающего кода из микроконтроллера с небольшим объемом памяти программ, например PIC16F84, на более емкую модель, скажем, PIC16F877. Поэтому для обеспечения переносимости программ рекомендуется всегда сбрасывать регистр PCLATH, даже если это в принципе и не нужно.