в лазури растопив холодный ветер гор.
Пурпурный ягод жар к себе влечет.
Пригубь последний дар кистей тугих.
Бродящий солнца сок по жилам потечет,
отрада есть в нем для тебя и для других.
Ведь к своему линялому исходу
клонится спелый год. А ночь несет мороз,
и облака высоко, и к восходу
покроет иней сеть прелестных лоз.
А вот маленькое любовное стихотворение:
Святая пред тобою колени склоняю
от тебя принимаю
дыханье мира.
Твой я.
Коль по нраву кумиру
нить порву бытия.
Исследования Эрвина Шрёдингера по атомной физике, несмотря на их ограниченность, оказались очень плодотворными. В своем ходатайстве об избрании создателя волновой механики в Берлинскую Академию наук Макс Планк в ноябре 1928 года писал, что уравнение Шрёдингера дало новые ценные математические методы расчета квантов и одновременно открыло новые перспективы в физике, которые имеют решающее значение для дальнейшего развития квантовой теории и разработка которых возможна в различных направлениях.
Правда, сторонники квантовой механики быстро ушли вперед от первоначальных представлений Шрёдингера. К их числу принадлежит и английский физик-атомщик, лауреат Нобелевской премии Поль Дирак, один из значительнейших теоретиков в физике нашего времени. Он применил принципы специальной теории относительности к квантовой механике и создал волновую механику электрона на релятивистской основе.
Квантовая электродинамика, разработанная в основном Дираком, Ферми, Паули и Гейзенбергом, явила собой предварительное завершение начатого Луи де Бройлем и Шрёдингером теоретического исследования мира атома. Тем самым была создана теория, которая позволяет правильно описать все атомные явления, присущие электронной оболочке. Квантовую теорию ядерных сил создал в 1935 году японский физик Юкава.
В релятивистской квантовой теории, называемой также "квантовая теория полей", слились воедино классическое понятие частицы с классическим понятием поля. Частицы являются квантами поля. Квантованное поле - это источник частиц и взаимодействия, устанавливающегося между ними. Это учение представляет собой большой прогресс с точки зрения не только физики, но и теории познания. Оно является дальнейшим шагом в направлении более глубокого понимания диалектики микромира.
Для физической картины природы особенно важны были те работы, которые вели к открытию "античастиц". Они выросли на основе положений квантовой механики. В последние годы в этой области достигнуты новые неожиданные результаты, заставляющие пересмотреть ряд естественнонаучных теорий, особенно в космической физике, и совершенно по-новому поставить часть старых вопросов.
Теория электрической проводимости полупроводников также возникла на фундаменте волновой теории, созданной Шрёдингером. Одним из результатов этих исследований было получение таких полупроводников, без которых невозможно было бы построить солнечные батареи спутников, лунников и т.д. "По иронии судьбы, - говорил Тирринг, - Шрёдингеру приходилось неоднократно возмущаться неудобствами, которые создавали в местах отдыха громко ревущие радиоустановки, хотя развитие транзисторных приемников стимулировалось именно теорией полупроводников, которая в конечном счете была основана на его волновой механике".
Ганс Тирринг, который сам принадлежит к числу физиков, сознающих гуманистический долг ученого перед обществом, писал далее: "Эта связь особенно отчетливо проявляется на примере эпохального открытия Отто Ганом расщепления ядра. Многие естественнонаучные открытия рано или поздно каким-либо образом воздействуют на жизнь человеческого общества. Этот пример должен послужить подтверждением необходимости давать человечеству не только новые инструменты и оружие, но и учить его мудрому использованию этих могущественных инструментов".
В отличие от Эрвина Шрёдингера, который был непримиримым и последовательным антифашистом, но не принимал активного участия в политике, Макс Борн принадлежал к тем ученым, которые непоколебимо и страстно стремятся к действенному служению общественному долгу естествоиспытателя.
Макс Борн был крупным физиком-теоретиком, вел большую исследовательскую и преподавательскую деятельность. В годы своего пребывания в Гёттингене он вместе с Джеймсом Франком возглавил блестящую школу атомной физики, влияние которой испытали на себе физики многих стран. Несмотря на это, только в возрасте 72 лет он был удостоен высшей научной награды - Нобелевской премии, которую многие его ученики и сотрудники получили гораздо раньше, чем он.
Это не удивительно, и сам Борн называет причины. "Работы, за которые мне в 1954 году была присуждена Нобелевская премия, - говорил он, - не содержали открытия какого-то нового явления в природе, а были обоснованием нового способа рассмотрения явлений природы".
В этом заключается главная научная заслуга Борна. Однако он известен и как исследователь новых явлений природы. Его работы в области теоретической оптики, особенно исследования по теории кристаллических решеток, не менее известны в среде специалистов, чем его интерпретация квантового феномена с точки зрения теории вероятности. Его учебник оптики относится к образцовым произведениям мировой литературы по физике. "Твои работы и книги написаны просто и прекрасно, они не устареют, - заметил Джеймс Франк в своем приветствии по случаю 80-летия Борна. - Я думаю, нет более совершенной книги по оптике, чем твоя".
Макс Борн родился 11 декабря 1882 года в Бреслау в семье ученого. Его отец был профессором анатомии и физиологии медицинского факультета университета в Бреслау, мать была дочерью фабриканта. В начальной школе и гимназии Борн ничем не выделялся. Его успехи по математике также были средними. Позднее он вспоминал, что в школе его считали "плохим математиком".
Сфера интересов Борна в университете, где он начал учиться в 1901 году, была очень широка. Больше всего он занимался астрономией, математикой же и физикой вначале интересовался как второстепенными предметами. Разбирался он также в биологии и философии. Его отец, умерший незадолго до этого, советовал ему слушать лекции по различным предметам, прежде чем остановиться на какой-либо определенной специальности.
"В Германии в то время это было возможно благодаря полной академической свободе в университетах, - писал Борн в 1955 году в своих "Астрономических воспоминаниях". - Большинство предметов не имело определенной программы, не существовало ни надзора за посещаемостью, ни экзаменов, за исключением выпускных. Каждый студент мог выбирать себе те лекции, которые нравились ему больше всего; он сам отвечал за то, чтобы к выпускным экзаменам получить сумму знаний, которая давала бы право заниматься определенной профессией или право на докторскую степень. Таким образом, на первый год я составил себе довольно смешанную программу, включающую физику, химию, зоологию, философию и логику, математику и астрономию. В школе я никогда не увлекался математикой, но в университете единственными лекциями, которые действительно доставляли мне радость, были лекции по математике и астрономии".
Особенно сильное впечатление производили на молодого, еще не нашедшего себя человека практические занятия астронома Юлиуса Франца, известного исследователя Луны, который, как писал Борн, лунную поверхность "знал лучше, чем географию нашей собственной планеты". У Франца он научился аккуратному обращению с инструментами, точным наблюдениям, исключению ошибок наблюдения и точным численным расчетам, то есть "всему арсеналу ученого-измерителя". Это была, как он говорил, "суровая школа точности", которая "давала ощущение твердой почвы под ногами".
Астрономическая подготовка имела большое значение для будущего физика и в ином плане. "Все оборудование этой обсерватории было устаревшим и скорее романтичным, чем эффективным, - писал он дальше. - Там имелось несколько старых телескопов времен Валленштейна, подобных тем, которыми пользовался Кеплер. Мы не имели электрического хронографа, но должны были учиться наблюдать за звездами, которые пересекали нити в поле зрения, считая удары больших часов и оценивая десятые доли секунды. Это была очень хорошая школа наблюдения, и вдобавок она имела привлекательность старого романтического искусства".