Выбрать главу

Такое взаимодействие между кровеносной и дыхательной системами – лишь один из многих способов, которыми связаны системы органов, они функционируют вовсе не по отдельности, как, к сожалению, мы впервые это узнаем из отдельных глав в учебнике. Поскольку такое мышление вредно для реального понимания того, как работают биологические системы, я постоянно предупреждаю об этом своих студентов на курсе анатомии и физиологии человека. Я говорю им, что системы органов взаимодействуют: они сотрудничают, они зависят друг от друга – и по отдельности большей частью бесполезны.

К сожалению, иногда этот синергизм теряется. Сбой в одной системе вызывает цепную реакцию в других – подобное случается при таких болезнях, как эмфизема. Эмфизема – это дегенеративное и неизлечимое респираторное заболевание, характеризующееся систематическим разрушением альвеол в легких. В результате уменьшается их число и нарушается функция – служить крошечными посредниками между атмосферой, которой мы дышим, и системой кровообращения, перемещающей кислород и углекислый газ по всему телу.

Причины эмфиземы различны, это и редко встречающийся наследственный дефицит белка, защищающего легкие[22], и вдыхание производственной пыли и химических веществ, но основная причина – курение сигарет. В конечном итоге вместе с поражением дыхательной системы нарушается и ключевая функция системы кровообращения, поскольку кровь, возвращающаяся из пораженных эмфиземой легких, не в состоянии принести достаточное количество кислорода к тканям и органам тела, чтобы они могли нормально функционировать.

По мере того как организмы становились все более разнообразными и сложными, то же самое происходило и с их кровеносными системами. Одной из эволюционных фишек стал насос, который выводил насыщенную кислородом и питательными веществами циркуляторную жидкость в организм, а потом возвращал ее, бедную кислородом и питательными веществами, готовя к новому кругу. Конечно, насос, о котором идет речь, – это сердце.

Как мы сейчас увидим, сердце – не единая структура, общая для всего животного царства. Циркуляторные насосы развивались в разных группах животных по отдельности. Они часто выглядят и работают совсем по-разному, и поэтому некоторые из получившихся органов не заслужили достаточного количества галочек, чтобы подтвердить ярлык «сердце». Общее между ними – это функция, что связано с феноменом, известным как конвергентная эволюция.

Иногда организмы сходным образом приспосабливаются к одинаковой среде – примером могут служить обтекаемые (или веретенообразные) формы тела акул и дельфинов. Эти животные не близкие родственники: дельфины – млекопитающие, а акулы – рыбы. Смысл здесь в том, что адаптация не передавалась этим созданиям от одного общего предка, но, напротив, стала результатом эволюции дважды (а то и многократно – у тунцов примерно та же форма, что и у торпед). Объяснение этого феномена заключается в том, что веретенообразные тела идеально подходят для создания скорости, и потому это прекрасная форма для быстро движущихся хищников из очень разных ветвей эволюционного дерева.

Еще один пример конвергентной эволюции в животном мире – питание кровью. Такие разные животные, как пиявки, клопы и летучие мыши-кровососы, разделяют набор похожих вампирских адаптаций, которые включают скрытность, небольшие размеры, острые зубы и антикоагулянты в слюне[23].

Подобно веретенообразным телам у водных хищников или вампирской скрытности, кровеносные системы, по-видимому, сходным образом эволюционировали во многих различных группах беспозвоночных. Циркуляторные насосы и связанные с ними сосуды выполняют, по существу, одну и ту же работу, и из-за этого они проявляют сходство даже тогда, когда их владельцы – не близкие родственники. Множественное эволюционное происхождение может также объяснить, почему кровеносные системы беспозвоночных, которые мы будем рассматривать далее, демонстрируют такую высокую степень вариативности формы. Существуют одиночные сердца, множественные сердца, а иногда сердец вовсе не бывает; открытые либо замкнутые системы кровообращения, в различиях между которыми мы скоро разберемся.

Эволюционное происхождение объясняет и то, почему в системах органов позвоночных существует меньше вариаций. Большинство ученых считают, что все системы кровообращения позвоночных можно проследить до одного общего предка, вероятно, вида бесчелюстных рыб, живших около 500 миллионов лет назад[24]. В результате некоторые приспособительные механизмы древних позвоночных можно обнаружить у ныне живущих – хотя они и изменились в процессе эволюции. Эти изменения, такие как эволюция двухкамерных сердец у рыб и четырехкамерных сердец у млекопитающих, крокодилов и птиц, позволили этим существам соответствовать требованиям очень различных сред, в которых они обитают. Тем не менее основная схема кровеносной системы древних позвоночных – артерии, вены и сердце с камерами – сохраняется и сегодня. Но об этом позже.

вернуться

22

Наследственные заболевания, связанные с дефицитом фермента альфа1-антитрипсина. – Прим. перев.

вернуться

23

Вероятно, самые известные примеры конвергентной эволюции – крылья насекомых, птерозавров, птиц и летучих мышей. Каждый из этих аэродинамических профилей эволюционировал отдельно, но выполнял аналогичную функцию, позволяя владельцам преодолевать силу тяжести и летать. Еще один пример – жабры; эти газообменные органы, по-видимому, развивались многократно как у беспозвоночных, так и у позвоночных.

вернуться

24

Интересно, что существуют специфические регуляторные гены (небольшие участки генетической схемы), общие как для насекомых, так и для позвоночных. Это указывает на возможность древней общей родословной для всех систем кровообращения.