Выбрать главу

«Его трагедия состояла... в почти болезненном неверии в себя. Он постоянно страдал от того, что у него способности критические опережали способности конструктивные. Критическое чувство обкрадывало, если так можно выразиться, любовь к творению собственного ума даже раньше, чем оно зарождалось».

Несчастье Эренфеста состояло в том, что он не понимал, насколько гениальны люди, его окружавшие. Как может человек требовать от самого себя быть на одной высоте с Эйнштейном, Лоренцем, Планком или Пуанкаре?!

Эренфест одним из первых заметил, что в выводе закона об излучении Планка имелись составляющие, далекие от классической физики. Между 1903 и 1906 годами он изучал работы Планка и вступил с ним в переписку. В статье 1906 года он повторил вывод Планка, используя исключительно постулаты Больцмана, без обращения к квантовой теории. Эренфест получил следующий закон излучения черного тела:

uv = (8πν²/с³)kT.

Этот закон был уже выведен британским ученым, лордом Рэлеем (1842-1919), и позже скорректирован его соотечественником Джеймсом Джинсом, именно поэтому он называется законом Рэлея — Джинса. Проблема этого закона заключалась в том, что он имел ограниченное действие, так как, согласно ему, энергия излучения растет неограниченно вместе с частотой. Если бы закон был верен для всех частот, то нагретые тела интенсивно излучали бы в ультрафиолетовой части спектра, что не соответствует опытным данным. Эренфест назвал это следствие ультрафиолетовой катастрофой. В некоторых книгах говорится, что Планк сформулировал свой закон, чтобы разрешить проблему ультрафиолетовой катастрофы, но истина состоит в том, что закон Планка появился за несколько лет до возникновения теоретической проблемы закона Рэлея — Джинса.

Вывод закона Рэлея — Джинса

Для вывода своего закона Рэлей действовал в два этапа: во-первых, он сделал расчет количества волн в полости в зависимости от частоты; во-вторых, использовал классический принцип равнораспределения энергии по степеням свободы. Рэлей не учитывал осцилляторы Планка, а изучал излучение напрямую. Он обнаружил, что в полости со стенками, обладающими абсолютной отражающей способностью, в каждом интервале частоты dv количество имеющихся волн должно быть:

(8πν²/с³)dv

Это выражение увеличивается как квадрат частоты, что логично, так как чем меньше длина волны, тем больше волн такой длины может излучаться. Примечательно: это отношение аналогично тому, что Планк обнаружил между энергией осциллятора и излучением, с которым она находится в равновесии. Как мы видим из предыдущей главы, Планк вывел свою формулу, основываясь на электродинамике Максвелла, что позволило ему забыть об излучении как таковом и сконцентрироваться на расчетах энтропии взаимодействующих осцилляторов. Вторая часть вывода формулы Рэлея — принцип равнораспределения энергии. Это принцип статистической физики, выведенный Максвеллом и Больцманом, согласно которому при большом количестве взаимодействующих тел, например молекул газа, имеющаяся энергия распределяется одинаково между всеми телами. Каждому элементу системы соответствует равное количество энергии, пропорциональное температуре Т, константе пропорциональности k и числовому фактору, зависящему от свойств элемента. Рэлей применил принцип равнораспределения к волнам и сделал вывод о том, что плотность волновой энергии в полости равна количеству волн определенной частоты, умноженному на энергию, которая, согласно принципу равнораспределения, есть у каждой волны. Так он получил уравнение:

uv = (8πν²/с³)kT.

Первый вариант этого закона был предложен Рэлеем в 1900 году, и он, как мы отмечали в предыдущей главе, был известен Рубенсу и другим экспериментаторам, работавшим в Имперском физико-технологическом институте. Рубенс во время посещения Планка и позднее, в докладе в Прусской академии наук, представленном через несколько дней, доказывал, что на низких частотах, на которых они с Курльбаумом проводили измерения, закон Рэлея лучше объяснял результаты, чем экспоненциальный закон Вина. Если мы посмотрим на схему, то увидим, что законы Планка и Рэлея — Джинса взаимно накладываются на низких частотах, а законы Вина и Планка — на высоких частотах. И только закон Планка соответствует экспериментальным данным на всех частотах.