Выбрать главу

Его формула была похожа на формулу гравитационного притяжения двух тел, но с большим количеством переменных, связанным со скоростью и ускорением частиц. Но один из преподавателей Планка, Гельмгольц, около 1870 года с помощью закона сохранения энергии доказал, что формула Вебера безосновательна. С другой стороны, имелась теория полей, своим рождением обязанная Майклу Фарадею, который представлял, что пространство вокруг магнита заполнено нитями — невидимыми силовыми линиями, натяжение которых отвечало за силы притяжения или отталкивания между полюсами магнита. Также Фарадей представлял электрические силовые линии, соединяющие положительные и отрицательные заряды и создающие притяжение. Шотландец Джеймс Клерк Максвелл (1831-1879) нашел математическое выражение идей Фарадея и сформулировал унифицированную теорию законов электричества и магнетизма. Его теория была изначально механической и предполагала, что все электромагнетические явления были следствием динамики в постоянной среде — эфире, заполняющем пространство. Теория Максвелла учитывала не только все основные известные явления, но и предсказывала, что эфир может передавать волны, как твердое тело передает колебания. Максвелл рассчитал скорость, которой должны были обладать эти волны, и нашел величину, близкую к скорости света. Он писал: «Мы едва ли можем отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений».

К тому времени, когда Планк отправился учиться в Берлин, были уже сформулированы два начала термодинамики. Первое начало выражает сохранение энергии, одна из его наиболее известных формулировок: «Энергия не создается и не разрушается, а только переходит из одной формы в другую». Этот закон был открыт в середине века учеными Джеймсом Джоулем (1818-1889), Юлиусом фон Майером (1814-1878), Уильямом Томсоном (позже известным как лорд Кельвин; 1824-1907) и самим Гельмгольцем. Суть открытия состояла в том, что существует количественное равенство между механической работой и разными формами энергии, способными производить работу и тепло. В 1840-х годах британский ученый Джеймс Джоуль провел серию опытов, доказавших эквивалентность разных форм энергии. Самый известный из этих опытов легче всего объяснить, хотя не так просто осуществить; состоит он в том, что опускаемый груз заставляет вращаться лопасти внутри сосуда с водой. Как показано на рисунке, блок, трос и ось передают движение груза на лопасти. Сосуд был термически изолирован, и Джоуль заметил, что вода в нем нагревается, когда груз опускается. Потенциальная гравитационная энергия груза превращалась в тепло. Джоуль пришел к выводу: для того чтобы нагреть фунт воды с 50 до 51 градуса по Фаренгейту, необходимо опустить груз весом 817 фунтов на один фут.

Этот опыт Джоуля доказал, что потенциальная гравитационная энергия может превратиться в тепло. Так, для того чтобы нагреть фунт воды с 50 до 51 градуса по Фаренгейту, необходимо опустить груз весом 817 фунтов на один фут.

-----------врезка----------

МНОГОЛИКАЯ ЭНЕРГИЯ

В честь Джоуля назван джоуль (Дж) — единица измерения работы и энергии в Международной системе единиц. Мы можем получить 1000 Дж разными способами:

а) при сгорании 64 мг глюкозы и получении воды и углекислого газа. Глюкоза содержит то, что мы называем химической энергией. Эта реакция постоянно протекает в наших мускулах, и в ее результате мы совершаем механическую работу при наших движениях и вырабатываем тепло;

б) при горении 0,1600 микрограмма (1,6 • 10-9 г) водорода с образованием гелия. Этот процесс горения, происходящий в звездах, является источником солнечной энергии.

Имея 1000 Дж, мы можем:

— придать теннисному мячу скорость 360 км/ч (это пример кинетической энергии);

— заставить крутиться волчок с частотой 1800 оборотов в минуту (также кинетическая энергия);

— поднять 1 кг яблок на высоту примерно 100 м (яблоки при этом получат потенциальную гравитационную энергию);

— подогреть 1 литр воды, повысив температуру на 0,25°С (именно это сделал Джоуль в своем опыте, превратив работу в тепло).

Первое начало термодинамики имеет следующее математическое выражение: внутренняя энергия физической системы увеличивается пропорционально увеличению тепла и уменьшается пропорционально выполненной работе. Обозначив через AU изменение энергии, через W — работу системы, через Q — тепло, переданное системе, мы получим: