Можно привести другой интересный пример: большая акватория может оказать значительное влияние на температуру окружающего воздуха (даже в таком относительно умеренном климате, как в Англии). Так, после заполнения Чеддарского водохранилища около Бристоля средняя температура в окружающем районе упала примерно на 3 °C. Вода в этом водохранилище очень холодная, так как питают его главным образом подземные источники.
ГЛАВА 14. Порывы и штилевые пятна
В ветреный день каждый яхтсмен может наблюдать порывы, идущие к лодке по воде. Если на ветер влияют препятствия, то порывы могут подойти с любой стороны, год случайными углами относительно лодки. Однако в открытых районах эти небольшие столбы более быстрого воздуха перемещаются в направлении общего ветрового потока. Срывая белые барашки с гребней волн, они движутся по воде, оставляя на ней темные полосы.
Сказанное может показаться элементарным, так как это всего лишь толчки более сильного проходящего ветра. В действительности все не так просто. Как проходит порыв? Как он действует на окружающий воздух? Каковы свойства этих быстродвижущихся столбов воздуха, которые пробиваются через более медленный воздушный поток?
Рис. 76. Изменение направления ветра при порыве, проходящем через медленно движущийся воздух
Мы уже говорили, что аналогии опасны, но с некоторыми оговорками можно лучше изучить явление, если представить порывы как твердое тело, прокладывающее дорогу через окружающий воздух. Будем и далее использовать аналогии и рассмотрим порыв как тупоносую баржу, прокладывающую себе путь вниз по реке, вместе с течением.
Что происходит у носа баржи? Она толкает перед собой в направлении движения некоторое количество воды. Создается носовая корабельная волна. Продолжать эту аналогию было бы затруднительно, но очевидно, что при стремительном прохождении более твердой массы быстродвижущегося воздуха некоторое количество более медленного воздуха толкается вперед и оттесняется в сторону.
Следовательно, сплошные препятствия не являются единственными помехами на пути воздуха. Медленно движущийся воздух оказывает такое же действие, с одной существенной разницей — ветер не может соединиться или проникнуть в оплошные препятствия, хотя в некоторой степени это происходит с такими препятствиями, как лес, который — является совокупностью сравнительно небольших сплошных препятствий. Таким образом, обычный ветер, без вихрей и термических восходящих потоков, дует примерно в одной горизонтальной плоскости, или параллельно поверхности моря или суши. Однако сильный порыв не обтекает препятствие, состоящее из медленно движущегося воздуха, а бесцеремонно сталкивает его с дороги.
На рис. 76 показано действие, которое может ощущаться на фронте порывистости. Более сильный ветер выталкивает медленно движущийся воздух в сторону порыва.
На практике это означает, что непосредственно перед подходом порыва к яхте возможно небольшое изменение направления ветра. Сам порыв может следовать в направлении общего ветрового потока, но за фронтом порывистости снова можно встретить воздушный поток, идущий под углом к генеральному направлению перемещения порыва. Мы вернемся к этому примеру позже.
Порывы часто бывают направлены вниз, к поверхности воды, с высокого берега или другого препятствия на наветренной стороне. При таком порыве вода, продвигаясь вперед по радиусам от центра, как бы выплескивается наружу. В этом случае опять происходит возмущение потока воздуха, но теперь уже из-за столкновения с поверхностью воды. Это явление показано на рис. 77.
Стремление воздушного потока уходить от порыва под углом проявляется не только у его вершины, но и по краям. При этом поток отклоняется в наружную сторону. Более быстрый воздух замедляется к периферии порыва, где инерция более медленного общего потока воздействует на него, выталкивая в сторону. На рис. 78 показано, как это происходит.
Рис. 77. Расхождение воздуха при порыве, направленном вниз
Рис. 78. Более быстрый воздух на краю порыва направлен к медленно движущемуся воздуху