Выигрывая каждый вечер, Смок Белью попирал законы теории вероятности; потрясенные владельцы рулеток, мало осведомленные в математике, считали, что он превращает в чушь арифметику. И действительно, когда машина для случайного выбора чисел начинает выдавать числа, которые можно точно угадать заранее, она не выполняет своих игорных функций. Ну, а на самом деле рулетка была испорчена, и когда шарик начинал свой путь от 9-го номера, то обычно останавливался у 26-го номера. Вероятностная связь оказалась здесь заменена строгой причинно-следственной. Вероятность выпадения № 26, вместо того чтобы быть равной 1/37, оказалась равна 1.
Рулетка — техническое усовершенствование той шапки с «жеребьями», которой и по сю пору пользуются, скажем, при розыгрыше ворот капитаны дворовых футбольных команд.
Жребий — вещь популярная. Древние римляне нередко бросали жребий перед боем, чтобы решать, кому из военачальников-трибунов командовать легионом. Жребий решает на юношеском первенстве мира по шахматам, кто из двух набравших равное число очков участников полуфинала выйдет в финал. А однажды, совсем — исторически — недавно, жребием решили и вовсе необычное, «неземное» дело.
В 1917 году иерархи русской православной церкви собрались, чтобы избрать патриарха, — после того, как двести лет, со времен Петра I, во главе церкви стоял коллегиальный орган, совет — синод. Иерархи избрали трех кандидатов на патриарший престол. Кто из них станет патриархом, должен был решить сам господь бог. Конечно, с помощью жребия. Он и решил! Любопытно, что даже священнослужители допустили личное вмешательство господа только на этой стадии. Забыли они, видно, что «без воли божьей ни один волос с головы не упадет». Интересно, вмешивается ли господь, когда жребий бросают футболисты? Но это — к слову. Как и все вступление. Потому что для того, чтобы столкнуться с вероятностным процессом, не надо ни ехать в Монте-Карло, ни бросать монету, ни вынимать жребий. Вероятностные процессы вокруг нас. И не только вокруг, но и внутри.
Что, скажем, вы будете делать сегодня вечером? Может быть, пойдете в кино. Может быть, на танцы. Может быть, в библиотеку. Может быть, в гости. А может быть, останетесь дома и дочитаете эту книжку. Что именно вы сделаете, зависит как от круга ваших интересов (вдруг вы не танцуете), так и от того, обещают ли афиши кинотеатров хороший фильм, есть ли с кем пойти, давно ли вы взяли книги в библиотеке, и так далее. И все-таки во многом ваш выбор будет зависеть от случайностей. Предсказать его трудно. Зато можно предсказать, зная ваши привычки, сколько примерно кинофильмов вы посмотрите в год и сколько раз побываете в библиотеке.
И не так уж сложно предсказать, сколько раз в среднем побывает в году в кино и библиотеке каждый человек в стране, достигший семилетнего возраста.
Волю случая, когда случаев много, можно учесть. Ведь недаром утверждает диалектика, что случайность есть форма проявления необходимости. Статистика же говорит, что в большом количестве случайных событий всегда можно установить ряд закономерностей.
Вот другой пример. Медицина пока не может предсказать точно, мальчик или девочка появится у женщины, привезенной в родильный дом. Нельзя сказать точно даже то, сколько в этот день и в этом роддоме из ста детей родится мальчиков. Но если мы возьмем много родильных домов и несколько десятков тысяч новорожденных, то соотношение мальчиков и девочек уже можно угадать. Оно будет составлять примерно 51 к 49. А чем большее число новорожденных будет принято во внимание, тем ближе будет это соотношение к среднестатистическому 511 на 489.
Нельзя предвидеть заранее, кто из партнеров выиграет шахматную партию — играющий белыми или играющий черными. Однако гроссмейстер Юрий Авербах взял 10 крупных турниров, игранных за 35 лет, и подсчитал результаты 1735 партий. Вот что у него получилось. Белые выигрывают в среднем 32 процента партий, черные — 22 процента, 46 процентов — ничьи.
Значит, можно предвидеть в общих чертах аналогичное распределение результатов по цветам фигур в турнире, который еще не состоялся. Предвидеть на основе известных нам для данного случая вероятностных закономерностей. Но можно пойти дальше. Какую-то часть партий, выигранных белыми, те начали ходом королевской пешки. В какой-то доле этих партий на втором ходу играл королевский конь. В какой-то доле этой последней доли на третьем ходу в игру входил королевский слон. Разумеется, на все такие ходы игроки имели свои причины. Но с точки зрения статистики мы здесь видим типичный сложный вероятностный процесс, состоящий из элементарных вероятностных актов. Рассчитать такой процесс впервые смогли с использованием для розыгрыша рулетки Монте-Карло. Поистине, нет худа без добра — даже азарт пошел науке на пользу!