Вот пример простейшего расчета по методу Монте-Карло.
Есть такой физический прибор — фотоумножитель. Это, по существу, ряд электродов, «превращающих» одну световую частицу, попавшую на первый из них, в каскад частиц.
Так вот, проследим последствия падения одного фотона, то есть мельчайшей световой частицы, на первый электрод. Фотон может выбить из электрода один электрон, может два. Как узнать, сколько? Да очень просто! Стоит взять пятачок и подбросить его. Орел — один электрон, решка — два. Положим, вышел «орел». Что же, примем, что на второй электрод пришел один электрон (тот, что вылетел из первого). Снова бросаем монету. Решка! Из второго электрода вылетают и достигают третьего электрода два электрона. Их судьбы не зависят друг от друга. Значит, монетку теперь надо бросить два раза: на судьбу первой частицы и второй отдельно. Положим, первая вышибла из третьего электрода 2 электрона, а вторая — только один. Теперь нам придется решать жребием результат удара всех трех частиц. И так до тех пор, пока мы не дойдем до последнего электрода, до конца прибора. Зачем это надо было делать? Но ведь у нас вместо, так сказать, голой вероятности есть теперь конкретное число, которое годится для математических операций. А главное — ведь мы здесь промоделировали с помощью простейшей схемы и монетки работу тонкого прибора! Те же самые результаты можно было получить, введя в прибор некие счетчики электронов. Впрочем, для случая с одним фотоном это невозможно даже в теории — «сосчитанный» электрон не пойдет дальше. А тут, даже не запуская прибор, удалось поставить опыт с ним. Вряд ли конкретный эксперимент, будь он возможен, дал бы именно этот результат; но именно этот результат вполне вероятен и возможен.
Перед нами вероятностная модель процесса в приборе, которая испытывается вместо самого прибора. Ну, а чтобы быть не рабом случайности, а хозяином ее, надо проверить много случайностей, проследить, что произойдет после падения еще одного фотона, и еще одного, и так много раз.
Это простейший случай потому, что здесь вероятность каждого хода одного элементарного акта равна половине и не меняется при переходе от одного элементарного акта к другому. А так бывает далеко не всегда. Но принцип метода Монте-Карло в общем тот же — даже в самых сложных и запутанных случаях. Методом Монте-Карло рассчитывали, скажем, термоядерный взрыв, судьбу и превращения частиц и атомных ядер во время него. В Грузинском институте кибернетики директор его В. Чавчанидзе вместе со своими сотрудниками В. Кумсишвили и М. Шадури сумели создать на электронно-вычислительной машине статистико-вероятностную модель каскада, вызванного попаданием в свинец одной частицы высокой энергии.
Конечно, хитрая рулетка слишком просто устроена и дает слишком малый выбор вероятностей. У ученых есть свои приемы для нахождения случайных чисел. Один из них просто-напросто таблица случайных чисел. Советские специалисты главным образом используют такую таблицу, предложенную алма-атинским математиком Кадыровым. Кадыров взял алфавитный список городов Советского Союза с указанием их населения, а затем обрубил у чисел населения начала и концы, оставив в каждом из чисел по четыре знака. В расположении этих чисел в таблице теперь очень трудно найти хоть какую-нибудь причинно-следственную связь, хоть какую-нибудь закономерность — то, что называют порядком. Что же, ученый добился именно того, что хотел. Хотя не совсем того, чего хотели грузинские ученые, приступившие в конце 50-х годов к созданию ряда статистико-вероятностных моделей.
Прославленный советский математик Колмогоров уже давно выдвинул условия, которым должен отвечать набор чисел, чтобы заслужить имя случайного. Условия были названы критерием Колмогорова. Критерию-то этому и не вполне отвечала таблица Кадырова. Случайно и между случайно выбранными числами оказались какие-то признаки связи. Пришлось подвергнуть таблицы Кадырова особой обработке, случайно, в результате розыгрыша, выбросив из них часть чисел, чтобы критерий Колмогорова строго соблюдался. Ну, а теперь можно было обходиться без рулетки или любой другой машины для определения воли случая. Достаточно было брать подряд числа из таблиц.
Вот еще один пример вероятностного процесса. Все мы много раз читали описания того, как перекрывают гидростроители могучие реки. Ревут многотонные МАЗы, выжимая до последней все свои лошадиные силы. Падают в воду и просто камни и бетонные пирамиды с надписями: «Покорись, Енисей!», «Покорись, Волга!», «Покорись, Ангара!» Но великаны речного царства не так уж склонны покоряться человеку. Могучее течение крутит камни, как песчинки, сносит их. Скатываются камни и с поднимающегося под водой, прежде чем выйти на поверхность и перекрыть реку, насыпного гребня. Чем быстрее поднимается гребень, тем меньше расход материалов на него — и камни не так быстро расползаются, и течению не удается в полной мере использовать свою силу. Поэтому день и ночь опрокидываются над рекой кузова самосвалов, день и ночь взад-вперед гонят свои машины ошалевшие от бессонницы шоферы. Сколько это может продолжаться? Сутки. Иногда двое, трое. А иногда… В 1951 году проран на реке Колумбия в США перекрывали ровно два месяца. Это была, по существу, катастрофа. Ведь помимо всего прочего, материалов пришлось израсходовать во много раз больше намеченного количества.