Из таблиц случайных чисел берут число — оно и принимается за вес камня. Вес случайный, но в пределах между заранее выбранными максимумом и минимумом веса. Траектория падения и погружения камня зависит и от его веса и от случайных условий. Берется одна из возможных для камня такого веса траекторий, а какая именно — это опять решается с помощью случайного числа. Снос камня по дну опять-таки зависит от веса. Но — и не только. Здесь повторяется тот же прием, что и с траекторией. И вот, наконец, сброшенный в воду камень нашел свое место на дне и успокоился. Его место помечают на карте дна и продолжают работу. Можно приниматься за расчеты, связанные со следующими за ним собратьями.
Расчеты показывают, что камни такого-то веса слишком широко раскатываются по дну; значит, их уйдет на перекрытие слишком много, а само перекрытие затянется. Что же, такую группу камней можно просто выкинуть — сейчас ведь для этого достаточно зачеркнуть несколько цифр на бумажном листе. Моделирование проводится заблаговременно, камни еще предстоит «заказывать». Главная задача моделирования в том и состоит, чтобы найти нужные размеры и тип камней и определить лучшие способы их «укладки».
Итак, первый слой камней уложен на дно прорана. Теперь начинается расчет второго слоя. Впрочем, и здесь, по существу, расчет заменяет сам процесс, потому что цифры повторяют заранее реальную будущую судьбу каждого камня. (Чем не предсказание будущего? Впрочем, ведь и чертеж еще не построенной машины тоже ее предсказание!) Словом, моделирование приостанавливается тогда, когда по карте видно, что проран перекрыт, гребень наброски выходит из воды по всей его ширине.
Теперь нужно выяснить, сколько материала и времени ушло на наброску. Подсчитать это не так уж сложно, а результат сразу скажет, правильно ли был выбран метод засыпки. Ведь с самого начала был примерно известен оптимальный, лучший (здесь — минимальный) объем и вес перекрытия, и с самого же начала строители поставили перед кибернетиками задачу — найти возможность перекрыть реку в течение одного дня. Если требования не удовлетворены, надо изменить границы веса камней или порядок засыпки их и просчитать все заново, с самого начала, пока не будет достигнут нужный результат. А метод, которым он был получен в модели, — готовый рецепт для строителей.
Вот возможный его образец: вниз должны лечь бетонные тетраэдры (пирамиды). Пирамиды и камни надо начать сбрасывать с середины моста и канатных дорог, а уже затем (на таком-то часу перекрытия) делать это и по краям.
Понадобилось несколько страниц, чтобы в самых общих, сверхупрощенных чертах изложить принципы работы со статистико-вероятностной моделью перекрытия. А сколько же времени нужно было на создание всех ее вариантов! Много. Одни расчеты отняли у двух человек около месяца. Но зато вместо одного длинного летнего дня Волгу перекрыли за половину его — за девять с половиной часов после начала засыпки. Высвободилось не только время. Гидростроители были по старой привычке запасливы и приняли меры на случай, если работы затянутся. И пришлось им увозить от прорана полторы тысячи бетонных пирамид, которые так и не понадобились!
Надо, разумеется, помнить, что статистико-вероятностное моделирование — только метод. Об этом напоминает прежде всего сам Чавчанидзе. Он говорит:
«…Для того чтобы применить его к расчету каменной наброски, нам понадобилось много данных: и вес, и объем камней, и траектории их полета и перекатывания под водой. Статистико-вероятностное моделирование только тогда помогает создать модель случайного процесса, когда опытом выявлены факты и цифры, хотя бы в общих чертах описывающие этот процесс».
Естественное условие — чтобы заменить при испытании собой объект, модель должна учитывать хотя бы часть его реальных свойств. Но когда это условие удается соблюсти, статистико-вероятностное моделирование проявляет удивительные «проницающие» способности. Разлагая каждое явление на элементарные акты, оно воспроизводит как бы причинно-следственную цепочку событий, а учет случайностей обеспечивает объективность отражения моделью прототипа.