А раз так, мозг должен был приспособиться к анализу случайностей, то есть, в общем плане, к статистико-вероятностному моделированию. Именно такой вывод делает В. В. Чавчанидзе. Мозг должен был стать аппаратом для стохастического моделирования. Именно благодаря этому он превратился в самомоделирующую машину, владеющую универсальным методом отражения процессов вне ее. И машина эта может с той или иной степенью точности предсказывать, на основе известных ей вероятностных закономерностей, некоторые будущие события. В принципе сама возможность предсказания с учетом достаточно полной информации отнюдь не кажется ученым чем-то удивительным. В мозге, в числе прочего, их поражает другое: то, что он умеет делать выводы и предвидеть будущее, пользуясь информацией явно неполной, явно недостаточной.
Пример — снова шахматы. Расчету они не поддаются. Шахматист, даже гроссмейстер с колоссальной памятью, как будто знает слишком мало для того, чтобы предсказать, как может сложиться ситуация. Но он предвидит, хотя и не в силах сформулировать точные критерии оценки позиций.
Вот что пишет кандидат физико-математических наук и кандидат в мастера по шахматам В. П. Смилга: «Шахматы — игра, в которой, как правило, невозможно дать общий строгий и безоговорочный рецепт наилучшего хода… Иными словами, невозможно обосновать точно: хорош данный ход или плох. Точное исключение из этого правила — ходы, безоговорочно приводящие к мату противника, а также игра в тех нескольких десятках окончаний, которые проанализированы до конца. Вероятно, для большинства людей, знакомых с шахматами, эти фразы прозвучали как нелепость. Всякому ведь очевидно, что зевок фигуры на „ровном месте“ грубая ошибка. Выигрыш „материала“ на том же „ровном месте“ следует всячески приветствовать… Но попробуйте, однако, сформулировать строгий критерий, когда хорош выигрыш фигуры. Если, например, съев слона, вы оставили под ударом своего ферзя, вряд ли партия закончится благополучно. Резонно возразить здесь: „Мы же оговорились: выигрыш на „ровном месте“, то есть в спокойной позиции“. Ну, а что такое „спокойная позиция“? И вот, при попытке строго определить это понятие, мы тут же погружаемся в трясину, потому что определить его нельзя».
Выходит, почти все решения в шахматах могут иметь в конечном счете лишь вероятностный характер. А гроссмейстер Ю. Л. Авербах так дополняет это положение В. П. Смилги:
«…даже расчет двух вариантов бывает чрезвычайно трудным делом, особенно когда эти варианты выглядят примерно равноценными. Тогда шахматист невольно попадает в положение буриданова осла. Кстати, я знаю одного гроссмейстера самого высокого класса, который в подобных положениях вынимает из кармана монету и незаметно для зрителей определяет ход на „орла и решку“. Вот вам и точный расчет».
Значит, все только очень и очень приблизительно?! Но, с другой стороны, разве мы не восхищаемся в партиях ходами смелыми, великолепными, заслуживающими двух восклицательных знаков, или просто «точными»? Выходит, без определенных критериев, без строгих систем оценок мозг человека как-то справляется с задачами, которые ставят перед ним шахматы. Притом справляется иногда очень странным образом. Тот же гроссмейстер обращает внимание на следующее чрезвычайно обнадеживающее обстоятельство:
«…самое удивительное — руководствуясь неправильными соображениями и вариантами, иначе говоря, совершенно случайно, юный шахматист часто делает хороший, сильный ход. Что это? Неспособность ребенка рассказать, как он мыслит, или показатель того, что в шахматах не обязательно исходить из характерных основных признаков позиции, чтобы сделать правильный ход?»
Шахматы для нас сейчас — только пример. И ситуацию, над которой задумался гроссмейстер, кибернетик передал бы так: мозг, пользуясь недостаточными и частично неверными сведениями (тем, что Авербах назвал соображениями и вариантами), сумел из них извлечь максимум информации, которого оказалось достаточно, чтобы найти хорошее решение.
Это «чудо», когда вывод бывает формально необоснованным и одновременно правильным, является в полном смысле слова обыкновенным чудом. Поль де Крюи говорит, например, о великом русском ученом Мечникове:
«В противоположность Коху и Левенгуку, сила которых заключалась в умении ставить природе вопросы, Мечников читал сначала толстые книги об эволюции, загорался воодушевлением, кричал „да!“, а потом уже длинным рядом опытов пытался вырвать у природы признание его идей. И как это ни странно, он часто оказывался прав».