— Мы даже не можем по-настоящему представить себе, каков был бы мир, например, со «щелями» во времени! — говорит академик Наан. — И все-таки подобную возможность нельзя считать заранее исключенной.
Одним словом, непрерывность — одно из тех математических понятий, которые играют важнейшую роль в построении современной физической картины мира.
Даже частичный отказ от постулата непрерывности повел бы не только к принципиальным изменениям наших физических представлений о Вселенной, но и к весьма существенным последствиям философского характера. Ведь с этим постулатом самым тесным образом связаны такие фундаментальные понятия, как причинность, познаваемость всех частей мира и многие другие.
Если пространство и время дискретны, то есть состоят из отдельных обособленных точек или моментов, разделенных непроходимыми щелями, то их общее число во Вселенной хотя и может быть бесконечным, но эта бесконечность не более чем счетная. Эти точки или моменты можно, в принципе, перенумеровать с помощью чисел натурального ряда.
Если же пространство и время непрерывны, то уже на любом отрезке длины или интервале времени мы встретимся с множеством более высокой мощности, чем счетная, — множеством мощности континуума.
Еще Георг Кантор сформулировал проблему, которая представляет не только чисто математический, но и глубокий физический интерес: насколько велика пропасть, разделяющая эти две бесконечности — счетную и континуальную?
Эта проблема возникает совершенно естественным образом. В самом деле, ведь между двумя любыми соседними числами натурального ряда, скажем, между единицей и двойкой располагается бесконечное множество точек числовой прямой — действительных чисел. Таким образом, континуальная бесконечность бесконечно богаче счетной или, иначе говоря, бесконечен скачок от счетного множества к континууму. Поэтому вполне логично задаться вопросом о существовании промежуточных бесконечностей.
Сам Кантор считал, что бесконечных множеств с промежуточной мощностью не существует. Это утверждение, получившее название проблемы континуума, он пытался доказать на протяжении многих лет, исходя из основных положений теории множеств, но безуспешно.
Проблема континуума — одна из тех знаменитых математических задач, которые, однажды возникнув, на протяжении многих десятилетий оставались неразрешенными, волнуя умы множества ученых.
На рубеже XIX и XX столетий Давид Гильберт, перечисляя важнейшие с его точки зрения задачи математики будущего, поставил проблему континуума на первое место.
Однако все колоссальные усилия математиков, направленные на ее решение, не принесли ничего реального вплоть до 1940 года, когда выяснилось, что проблема континуума теснейшим образом связана с другим важнейшим положением теории множеств, так называемой аксиомой выбора.
Как и в основе многих других математических теорий, в фундаменте теории множеств лежит система аксиом, исходных положений, из которых путем логических заключений выводятся все остальные положения.
Система аксиом должна быть непротиворечивой — логические выводы, полученные на ее основе, не должны вступать в противоречия друг с другом. Это одно из фундаментальных требований к исходным положениям любой научной теории, так как из противоречивых утверждений можно вывести все что угодно.
Ведь если два утверждения противоречат друг другу — одно из них неизбежно является ложным. Показательна в этом смысле своеобразная теорема, которую приводит математик Хаусдорф в качестве подстрочного примечания в своей знаменитой книге «Теория множеств»:
«Если дважды два равно пяти — то существуют ведьмы…»
Итак — непротиворечивость. Но, как уже было сказано, система исходных положений канторовской теории множеств этому требованию, к сожалению, не удовлетворяет — их логическое развитие приводит к неустранимым парадоксам.
И многие математики как раз и видят выход из третьего великого кризиса в том, чтобы построить такую аксиоматику теории множеств, которая «давала бы все, что нужно, и ничего лишнего», то есть не приводила бы к парадоксам.
Попыток предпринималось немало. В настоящее время наибольшим признанием пользуется система аксиом Цермелло — Френкеля.
С парадоксами она пытается расправиться путем введения специальных «ограничительных» аксиом, попросту запрещающих существование таких множеств, которые приводят к неразрешимым противоречиям.
Удастся ли таким путем до конца преодолеть все трудности, покажет будущее. Сейчас нас интересует другое. В системе аксиом Цермелло — Френкеля есть несколько аксиом, непосредственно связанных с бесконечностью. Одна из них, например, постулирует ее существование. Другая — «аксиома выбора», аксиома, которая подобно вопросу о непрерывности имеет самое непосредственное отношение к нашим представлениям о физике Вселенной.