Эти занятия помогли ему выработать и еще одно ценнейшее качество исследователя природы: Фридман не просто производил математические выкладки, он всегда стремился распознать за формулами реальные физические явления.
— Александр Александрович Фридман имел редкие способности к математике, — вспоминает профессор А. Ф. Гаврилов, — однако изучение одного только математического мира чисел, пространства и функциональных соотношений в них его не удовлетворяло. Ему было мало и того мира, который изучался теоретической и математической физикой. Его идеалом было наблюдать реальный мир и создавать математический аппарат, который позволил бы формулировать с должной общностью и глубиной законы физики и затем, уже без наблюдения, предсказывать новые законы.
Счастливое сочетание качеств ученого-исследователя, которое и позволило Фридману сделать чрезвычайно важный шаг в познании картины Вселенной.
Но известность и авторитет в науке тоже играют немаловажную роль. Особенно в тех случаях, когда никому не ведомый молодой исследователь посягает на мнение признанных корифеев. В свое время действие этого фактора испытал на себе и сам Эйнштейн. Теперь же, став известнейшим автором двух великих физических теорий, он, в свою очередь, недооценил результаты, полученные Фридманом.
Трудно сказать, проверял ли Эйнштейн выводы Фридмана с карандашом в руках. Скорее всего, бегло. Должно быть, великий физик положился на интуицию, а она подсказывала, что ничего подобного не может быть: ведь нестационарная Вселенная Фридмана противоречила его собственной стационарной модели.
Но как бы там ни было, Эйнштейн, ознакомившись со статьей Фридмана, поместил в очередном номере «Физического журнала» коротенькое замечание, в котором категорически заявлял, что результаты Фридмана вызывают серьезные сомнения и скорее всего неверны.
Прочитав это, Фридман написал Эйнштейну подробное письмо, в котором обстоятельно излагал существо своей работы. На этот раз великий физик проверил все с особенной тщательностью и к своему удивлению пришел к выводу, что… Фридман совершенно прав.
Возможно, другой на его месте из принципа продолжал бы отстаивать свое первоначальное мнение или, в лучшем случае, просто промолчал. Но Эйнштейну была абсолютно чужда какая бы то ни было амбиция, увы, нередко застилающая глаза маститым ученым. Самой главной целью его жизни было познание реальной природы, и потому он никогда не упорствовал в своих ошибках. Не имело значения, что ошибся он сам, было гораздо важнее, что ошибка исправлена и тем самым внесено что-то новое в наши знания о мире.
И 13 мая 1923 года в редакцию «Физического журнала» поступило письмо Эйнштейна, которое и было вскоре опубликовано под заголовком «Заметка о работе А. Фридмана о кривизне пространства».
«В предыдущей заметке я критиковал названную работу, — писал Эйнштейн. — Однако моя критика, как я убедился из письма Фридмана, основывалась на ошибках в вычислениях.
Я считаю результаты Фридмана правильными и проливающими новый свет. Оказывается, что уравнения поля допускают наряду со статическими также и динамические (т. е. переменные относительно времени) центрально-симметричные решения для структуры пространства».
Любопытно: как выяснилось позднее, и статическая модель Эйнштейна тоже неизбежно переходит в нестационарную. Но это означало, что однородная изотропная Вселенная должна обязательно либо расширяться, либо сжиматься.
Физикам и астрономам стало ясно, что уравнения Эйнштейна имеют решения, описывающие мир, геометрия которого меняется с течением времени. При расширении средняя плотность вещества постепенно убывает, а следовательно, меняется и кривизна пространства.
Приверженность А. Эйнштейна к модели стационарной Вселенной, мешавшая ему разглядеть столь важное свойство выведенных им же самим уравнений, имела свои объективные причины. Идея стационарности была в то время чем-то само собой разумеющимся. С одной стороны, она опиралась на представления о так называемых «неподвижных» звездах[12], а с другой — на все еще существовавшую веру человечества в стабильность мирового порядка.
Таким образом, заслуга Фридмана состояла не только в том, что ему удалось преодолеть предвзятую точку зрения создателя теории относительности, но прежде всего в том, что он сумел отказаться от традиционного взгляда на мир.
Независимо от теоретических исследований Фридмана, американский астроном Слайфер обнаружил в спектрах галактик «красное смещение». Подобное явление, известное в физике под названием эффекта Доплера, наблюдается в тех случаях, когда расстояние между источником света и приемником увеличивается.
12
Далекие звезды, которые благодаря огромным расстояниям от Земли кажутся земному наблюдателю неподвижными друг относительно друга.