Выбрать главу

В обратном процессе, когда атомы натрия переходят из возбужденного состояния в основное, они излучают свет с той же частотой ν, которую прежде поглотили, то есть ту же линию D, но теперь уже ярко-желтую.

Несмотря на все успехи теории Бора, физики вначале принимали ее скорее как удобную модель, но не очень верили в реальность такой энергетической лестницы в атоме. Это сомнение разрешили Джеймс Франк (1882–1964) и Густав Герц (род. 1887) (племянник знаменитого Генриха Герца) в том же 1913 году. Как и всякая ясная идея, теория Бора не только объясняла старые факты, но также подсказывала пути для своей проверки.

Арнольд фон Зоммерфельд (1868–1951) — замечательный физик и блестящий педагог — был одним из первых в Европе, кто сразу же не только поверил в постулаты Бора, но и развил их дальше, «…следуя, как когда-то Кеплер при изучении планетной системы, внутреннему чувству гармонии». Он рассуждал так: если атом подобен солнечной системе, то электрон в такой системе может вращаться не только по окружности, как в модели Бора, но и по эллипсам, причем ядро должно находиться в одном из фокусов этих эллипсов.

Зоммерфельд

Эллипсы с одинаковой большой полуосью принадлежат одному и тому же значению главного квантового числа n, так как энергии электрона на таких орбитах равны между собой (Зоммерфельд знал доказательство, а нам придется поверить в это). Однако эллипсы различаются по степени сплющенности, которая зависит от орбитального момента. Вполне в духе идей Бора Зоммерфельд предположил, что при заданном n эллипсы могут быть сплющены не произвольным образом, а только так, чтобы орбитальное квантовое число l (которое их различает) принимало целые значения l = 0,1,2…. n — 1, то есть число допустимых эллипсов не превышает числа n — номер стационарного состояния.

Орбитали

Бор и Зоммерфельд показали даже нечто большее: если учесть теорию относительности Эйнштейна, то окажется, что энергия электрона различна на всех эллипсах, а потому уровни энергии в атоме необходимо нумеровать двумя квантовыми числами: n и l. По той же причине спектральные линии, возникающие при переходах электрона между уровнями, с разными n, должны иметь тонкую структуру, то есть расщепляться на несколько компонент. По просьбе Зоммерфельда Фридрих Пашен проверил и подтвердил это следствие теории на примере линии гелия λ = 4686 Ǻ, которая соответствует переходу с уровня n = 4 на уровень n = 3 (с четвертого уровня на третий). Внимательно рассмотрев фотографию спектра гелия, он обнаружил, что линия в действительности состоит из тринадцати тесно расположенных линий.

Гелий

Это было удивительное совпадение, и в то время (1916 году) его сравнивали с вычислениями Леверье и Адамса, которые предсказали планету Нептун.

Но даже два квантовых числа — n и l не объяснили всех особенностей спектров. Например, если поместить излучающий атом в магнитное поле, то спектральные линии расщепляются совсем по-другому.

Расщепление спектральных линий в магнитном поле пытался обнаружить Фарадей еще в 1862 году в своей последней (уже неопубликованной) работе. Однако магнит, который он для этой цели использовал, был слишком слаб, и лишь в 1896 году Питер Зееман наблюдал явление, которое в свое время тщетно искал Фарадей.

После работ Бора и Зоммерфельда явление расщепления спектральных линий в магнитном поле стали толковать следующим образом. Представьте, что перед вами электромотор. Даже не вникая в технические детали его устройства, вы со школьных лет знаете, что его ротор начнет вращаться, если через его обмотку пропустить электрический ток. Электрон, движущийся в атоме по замкнутой орбите, подобен витку тока в обмотке электромотора. И точно так же, как этот виток, орбита электрона в магнитном поле начнет поворачиваться. Однако в отличие от витка она не может занимать в атоме произвольные положения, поскольку этому препятствуют квантовые законы. Суть этих квантовых законов проще всего понять, взглянув на прилагаемый рисунок. На рисунке магнитное поле направлено снизу вверх, а орбита электрона изображена «с ребра», причем радиус орбиты численно равен значению орбитального момента l (на рисунке l = 3). Оказывается, законы квантования допускают только такие положения плоскости орбиты относительно магнитного поля Я, при которых проекция диаметра орбиты на направление поля H равна целому числу. Это третье магнитное квантовое число m, как легко видеть, принимает значения m = l, l — 1…., 1, 0, — 1…., — (l—1), — l, то есть всего (2l+ 1) значений.