Однако приведенные наблюдения не подсказывают способа вычислить длину периода. На первый взгляд длина периодов в таблице меняется весьма прихотливо: в I периоде — два элемента, во II и III — восемь, в IV и V — восемнадцать, в VI — тридцать два. Но еще в 1906 году Иоганн Ридберг заметил, что ряд чисел 2, 8, 18, 32 подчиняется простой формуле: 2n2. Эту закономерность удалось объяснить Паули только в 1924 году, после открытия им принципа запрета.
Ход рассуждений Паули легко понять. В самом деле, движение электрона в атоме описывается четырьмя квантовыми числами, о которых мы подробно говорили в предыдущей главе и которые напомним теперь еще раз:
n — главное квантовое число, которое может принимать значения 1, 2, 3….;
l — орбитальное квантовое число, которое при заданном n принимает значения О, 1, 2…., (n — 1);
m — магнитное квантовое число; при заданных n и l оно пробегает ряд значений — l, — (l—1)…. — 1, О, 1… (l—1), l, — всего 2l+1 значений;
S — спиновое квантовое число, принимающее значения +1/2 и -1/2.
Принцип запрета Паули гласит:
В атоме не может быть двух электронов с одинаковыми квантовыми числами.
Поэтому на оболочке с порядковым номером n может поместиться только ограниченное число электронов. Например, на первой оболочке умещаются только два электрона. В самом деле, если главное квантовое число n = 1, то для орбитального момента допустимо только одно значение l = 0, а следовательно, и магнитное квантовое число m = 0; спин электрона не зависит от других квантовых чисел и может принимать два значения S = 1/2 и S= -1/2. В соответствии с этим на первом квантовом уровне могут поместиться только два электрона с квантовыми числами: (n = 1; l = 0; m = 0; S = 1/2) и (n = 1; l = 0; m = 0; S= —1/2). Рассуждая точно так же, можно убедиться, что на второй оболочке умещается 8 электронов, на третьей — 18 и вообще на оболочке с главным квантовым числом n помешается 2n2 электронов. То есть число электронов на заполненных оболочках атомов равно длине периодов таблицы Менделеева.
Чтобы нагляднее уяснить себе причину появления этих чисел, представьте, что вам надлежит заселить жилой квартал, в котором n домов, пронумерованные числом l = О, 1, 2… (n — 1), причем в доме с номером l только (2l+1) квартир. Если в каждую квартиру запрещено поселять больше двух жильцов, то во всем квартале поместится 2n2 человек и не более.
Каждый период в таблице Менделеева начинается щелочным металлом и заканчивается инертным газом. Химические свойства этих элементов резко различны. Теперь легко понять и причину их различия. Инертные газы — гелий, неон, аргон и т. д. — отличаются от всех остальных элементов тем, что у них оболочки полностью заполнены.
Атомы щелочных металлов: лития, натрия, калия и т. д., которые в таблице расположены следом за инертными газами, содержат по одному электрону в следующей, более высокой оболочке. Эти электроны связаны с ядром много слабее, чем остальные, и поэтому атомы щелочных металлов легко их теряют и становятся положительными однозарядными ионами:
Li+, Na+, К+ и т. д.
Наоборот, в атомах фтора, хлора, брома и т. д. недостает одного электрона, чтобы замкнуть их внешнюю оболочку до оболочки благородного газа. Поэтому-то галогены так охотно присоединяют электрон, образуя отрицательные ионы F-, Cl- Вr- и т. д. Когда атомы натрия и хлора встречаются, то натрий отдает свой внешний электрон хлору, в результате чего возникают ионы Na+ и Cl-. Ионы эти притягиваются, образуя молекулы NaCl, из которых состоит хорошо известная всем поваренная соль.
Попутно нам удалось выяснить смысл понятия валентности, которое так трудно определить химически: валентность элемента в соединении — это число электронов его атома, участвующих в образовании химической связи. Легко видеть, что валентность вместе с другими химическими свойствами должна повторяться периодически через 2, 8, 18, 32 элемента при начале заполнения каждой следующей оболочки.
В прошлом веке числа 2, 8, 18, 32 вызывали недоумение и получили название «магических». Объяснить их пытались по-разному, например, вспоминали, что октаэдр — самый прочный многогранник и что в буддийской философии есть учение о восьми путях добра. Но вряд ли кто предполагал, что для них существует такое простое и рациональное объяснение.
Если бы Дальтон, Лавуазье, Менделеев — все, кто в свое время посвятил жизнь и силы изучению системы химических элементов, попали хоть ненадолго в наше время, они бы, без сомнения, испытали совершенную радость чистого знания, которое наконец достигнуто в учении об элементах. Вместо случайного набора веществ, относительно которых даже не всегда было известно, элементы ли это или смеси, они увидели бы стройную иерархию атомов: от водорода до курчатовия.