Вполне ясно это стало в 1927 году, когда Вернер Гейзенберг догадался, что хотя к атомному объекту одинаково хорошо применимы оба понятия: и «частица» и «волна», однако определить их строго можно только порознь.
В физике слова «определить понятие» означают: «Указать способ измерения величины, которая этому понятию соответствует».
Гейзенберг утверждал: нельзя одновременно, и при этом точно, измерить координату х и импульс р атомного объекта. С учетом формулы де Бройля λ = h/p это означает: нельзя одновременно и в то же время точно определить положение х атомного объекта и длину его волны λ. Следовательно, понятия «волна» и «частица» при одновременном их использовании в атомной физике имеют ограниченный смысл. Более того, Гейзенберг нашел численную меру такого ограничения. Он доказал, что если мы знаем положение х и импульс р атомной частицы с погрешностями δх и δр, то мы не можем уточнять эти значения бесконечно, а лишь до тех пор, пока выполняется неравенство — соотношение неопределенностей:
δх δр ≥ 1/2h.
Этот предел мал, но он существует, и это фундаментально.
Соотношение неопределенностей — строгий закон природы, который никак не связан с несовершенством наших приборов. Оно утверждает: нельзя — принципиально нельзя — определить одновременно и координату и импульс частицы точнее, чем это допускает приведенное неравенство.
Нельзя — точно так же, как нельзя превысить скорость света или достичь абсолютного нуля температур. Нельзя — как нельзя поднять самого себя за волосы или вернуть вчерашний день. И ссылки на всемогущество науки здесь неуместны: сила ее не в том, чтобы нарушать законы природы, а в том, что она способна их открыть, понять и использовать.
Нам кажется это немного странным — мы привыкли к всесилию науки и утверждение «невозможно» исключили из ее лексикона. Замечательно, однако, что высший триумф любой науки достигается именно в моменты установления таких запретов с участием слова «невозможно». Когда сказали: «Невозможно построить вечный двигатель», возникла термодинамика. Как только догадались, что «нельзя превысить скорость света», родилась теория относительности. И лишь после того, как поняли, что различные свойства атомных объектов нельзя измерять одновременно с произвольной точностью, окончательно сформировалась квантовая механика.
При первом знакомстве с соотношением неопределенностей возникает инстинктивное сопротивление: «Этого не может быть!» Гейзенберг объяснил его причину, отбросив еще одну идеализацию классической физики — понятие наблюдения. Он доказал, что в атомной механике его нужно пересмотреть, точно так же как и понятие движения.
Подавляющую часть своих знаний о мире человек приобретает с помощью зрения. Эта особенность восприятия человека определила всю его систему познания: почти у каждого слово «наблюдение» вызывает в сознании образ внимательно глядящего человека. Когда вы смотрите на собеседника, то абсолютно уверены, что от вашего взгляда ни один волос не упадет с его головы, даже если вы смотрите пристально и у вас «тяжелый взгляд». В сущности, именно на этой уверенности основано понятие наблюдения в классической механике. Классическая механика выросла из астрономии, и поскольку никто не сомневался, что, наблюдая звезду, мы никак на нее не воздействуем, то это молчаливо приняли и для всех других наблюдений.
Понятия «явление», «измерение» и «наблюдение» тесно связаны между собой, хотя и не совпадают. Древние наблюдали явления — в этом состоял их метод изучения природы. Из наблюдений они извлекали затем следствия с помощью чистого умозрения. По-видимому, с тех пор укоренилась уверенность: явление существует независимо от наблюдения.
Мы много раз подчеркивали главное отличие нынешней физики от античной: она заменила умозрение опытом. Теперешняя физика не отрицает, что явления в природе существуют независимо от наблюдения (и конечно, от нашего сознания). Но она утверждает: объектом наблюдения эти явления становятся лишь тогда, когда мы укажем точный способ измерения их свойств. В физике понятия «измерение» и «наблюдение» неразделимы.
Всякое измерение есть взаимодействие прибора и объекта, который мы изучаем. А всякое взаимодействие нарушает первоначальное состояние и прибора и объекта, так что в результате измерения мы получаем о явлении сведения, искаженные вмешательством прибора. Классическая физика предполагала, что все подобные искажения можно учесть и по результатам измерений установить «истинное» состояние объекта, независимое от измерений. Гейзенберг показал, что такое предположение есть заблуждение: в атомной физике «явление» и «наблюдение» неотделимы друг от друга. По существу, «наблюдение» тоже явление, и далеко не самое простое.