Выбрать главу

Как и многое в квантовой механике, такое утверждение непривычно и вызывает бессознательный протест. И все же попытаемся его понять или хотя бы почувствовать.

Ежедневный опыт убеждает нас: чем меньше объект, который мы исследуем, тем легче нарушить его состояние. Ничего меньше атомных объектов — атома, электрона — мы в природе не знаем. Определить их свойства усилием воли мы не можем. В конце концов мы вынуждены измерять свойства атомных объектов с помощью самих объектов. В таких условиях прибор неотличим от объекта.

Но почему нельзя добиться, чтобы в процессе измерения один атомный объект лишь незначительно влиял на другой?

Дело в том, что оба они — и прибор и объект — находятся в одном и том же квантовом мире и поэтому их взаимодействие подчиняется квантовым законам. А главная особенность квантовых явлений — их дискретность. В квантовом мире ничего не бывает чуть-чуть — взаимодействия там происходят только квантом: или все, или ничего. Мы не можем как угодно слабо воздействовать на квантовую систему — до определенного момента она этого воздействия вообще не почувствует. Но коль скоро величина воздействия выросла настолько, что система готова его воспринять, это приводит, как правило, к переходу прежне и системы в новое (тоже квантовое) состояние, а часто даже и к ее гибели.

Процесс наблюдения в квантовой механике напоминает скорее вкус, чем зрение. «Для того чтобы узнать свойства пудинга, его необходимо съесть» — любили повторять создатели квантовой механики. И подобно тому как, съев однажды пудинг, мы не в состоянии еще раз проверить свое впечатление о его достоинствах, точно так же мы не можем беспредельно уточнять наши сведения о квантовой системе: ее разрушит, как правило, уже первое измерение. Гейзенберг не только понял впервые этот суровый «факт, но и сумел записать его на языке формул.

Соотношение неопределенностей, каким бы непонятным оно ни казалось, есть простое следствие корпускулярно-волнового дуализма атомных объектов. Вместе с тем это соотношение — ключ к пониманию всей квантовой механики, ибо в нем сконцентрировались главные ее особенности. После этого открытия Гейзенберга пришлось пересмотреть не только атомную физику, но и всю теорию познания.

Такой шаг оказался под силу опять-таки лишь Нильсу Бору, который счастливо сочетал в себе могучий интеллект ученого и философский склад души истинного мыслителя. В свое время он создал систему образов квантовой механики, теперь, четырнадцать лет спустя, он тщательно отрабатывал систему ее понятий.

После Бора стало ясно, что и соотношение неопределенностей, и корпускулярно-волновой дуализм лишь частные проявления, более общего принципа — принципа дополнительности.

ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ

Принцип, который Бор назвал дополнительностью, — одна из самых глубоких философских и естественнонаучных идей нашего времени, с которой можно сравнить лишь такие идеи, как принцип относительности или представление о физическом поле. Его общность не позволяет свести его к какому-либо одному утверждению — им надо овладевать постепенно, на конкретных примерах. Проще всего (так поступил в свое время и Бор) начать с анализа процесса измерения импульса р и координаты х атомного объекта.

Нильс Бор заметил очень простую вещь: координату и импульс атомной частицы нельзя измерить не только одновременно, но вообще с помощью одного и того же прибора. В самом деле, чтобы измерить импульс р атомной частицы и при этом не очень сильно его изменить, необходим чрезвычайно легкий подвижный «прибор». Но именно из-за его подвижности положение его весьма неопределенно. Для измерения координаты х мы должны поэтому взять другой — очень массивный «прибор», который не шелохнулся бы при попадании в него частицы. Но как бы ни изменялся в этом случае ее импульс, мы этого даже не заметим.

Когда мы говорим в микрофон, то звуковые волны нашего голоса преобразуются там в колебания мембраны. Чем легче и подвижнее мембрана, тем точнее она следует за колебаниями воздуха. Но тем труднее определить ее положение в каждый момент времени. Эта простейшая экспериментальная установка является иллюстрацией к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики атомного объекта — координату х и импульс р. Необходимы два измерения и два принципиально разных прибора, свойства которых дополнительны друг другу.