Непривычные особенности законов случая имеют естественное объяснение. В самом деле, бросание монеты — очень непростой процесс. Мы не хотим или не умеем изучать его во всей сложности. Поэтому мы намеренно закрываем глаза на всю его сложность, отказываемся следить за траекторией монеты и хотим знать только конечный результат испытания. Такое пренебрежение к деталям процесса не проходит даром — теперь мы можем достоверно предсказать только усредненный результат многочисленных однотипных испытаний, а для каждого отдельного события мы в состоянии указать лишь вероятный его исход.
Широко бытует заблуждение, что вероятностное описание движения менее полно, чем строго причинное, классическое, с его понятием траектории. С точки зрения классической механики это действительно так. Однако если мы откажемся от части ее жестких требований (например, от знания начальных координат и импульсов), тогда классическое описание бесполезно. На смену ему приходит вероятностное, и в новых условиях оно будет исчерпывающим, поскольку сообщает нам все сведения о системе, которые мы вообще можем узнать о ней с помощью опыта.
СТРЕЛЬБА В ТИРЕ
При игре в «орел-решку» мы намеренно не хотим, знать начального положения и скорости монеты и целиком полагаемся на волю случая. Несколько другие желания одолевают нас в тире: там мы всегда стремимся попасть в центр мишени. Но, несмотря на это стремление (довольно сильное), мы никогда заранее не знаем, в какое место мишени попадет каждая из пуль. Попадания группируются в довольно правильный овал, который принято называть «эллипсом рассеяния». От чего он зависит?
Очевидно, чтобы все пули, вылетающие из винтовки, попадали всегда в одну и ту же точку мишени, необходимо, чтобы в момент вылета все они имели одни и те же начальные координаты х и скорости v (или импульсы р). А это возможно лишь в том случае, если вы целитесь безошибочно и, кроме того, заряд пороха во всех патронах всегда в точности одинаков.
Ни то, ни другое обычно недостижимо. Поэтому распределение отверстий от пуль на мишени всегда подчиняется законам случая, и можно говорить лишь о вероятности попадания в «десятку» или «девятку» мишени, но никогда нельзя быть уверенным в этом заранее.
Как и при игре в «орел-решку», эту вероятность можно измерить. Допустим, мы произвели 100 выстрелов и 40 раз попали в «десятку», 30 раз — в «девятку», 15 — в «восьмерку» и так далее — до нуля. Тогда вероятности попадания в «десятку», «девятку», «восьмерку» и т. д. соответственно равны: W(10)=40/100=0,4; W(9)=0,3; W(8)=0,15 и т. д.
Можно даже построить диаграмму, которая как бы показывает внутреннюю структуру эллипса рассеяния.
Если мы возьмем теперь такую же мишень и вновь 100 раз по ней выстрелим, то расположение отверстий на ней будет совсем другим, чем на первой мишени. Но число попаданий в «десятку», «девятку» и т. д. останется примерно тем же самым, а следовательно, и диаграмма эллипса рассеяния также останется без изменения.
Конечно, для разных стрелков диаграммы различны: для опытного стрелка они уже, для неопытного — шире. Но для каждого отдельного стрелка она остается неизменной, так что опытный тренер по одному виду мишени может установить, кому из его учеников она принадлежит.
Из приведенных простых примеров следует, что «законы случая» — это не пустая игра слов. Конечно, каждая отдельно взятая пуля попадет в случайную точку мишени, которую нельзя предсказать заранее. Однако при большом числе выстрелов попадания образуют настолько закономерную картину, что мы воспринимаем ее как достоверную и совершенно забываем о вероятности, лежащей в ее основе.
ДИФРАКЦИЯ ЭЛЕКТРОНОВ
Простой пример со стрельбой напоминает опыты квантовой механики значительно больше, чем это может показаться на первый взгляд. Чтобы убедиться в этом, заменим ружье «электронной пушкой», мишень — фотопластинкой, а между ними поместим тонкую металлическую фольгу.
«Электронная пушка» не шутка, а научный термин, который обозначает устройство для получения пучка электронов примерно такое же, как в телевизионной трубке (или трубке Крукса). Из этого пучка с помощью диафрагм и фокусирующих линз мы можем выделить очень узкий электронный луч, в котором все электроны движутся с одинаковой скоростью.
Теперь направим этот луч через металлическую фольгу на фотопластинку и затем проявим ее. Какое изображение мы на ней увидим? Точку? Эллипс рассеяния, как при стрельбе в тире? Или что-нибудь еще? Ответ нам давно известен: на фотопластинке мы увидим дифракционные кольца, подобные тем, которые изображены на предыдущей странице. Мы можем теперь объяснить даже причину их появления.