В самом деле, мы много раз повторяли, что электрон — это не только частица, но также и волна. И если до сих пор мы еще не привыкли к этому факту, то, во всяком случае, должны были его запомнить. Поэтому сама по себе дифракция электронов не должна нас теперь удивлять: явление дифракции возникает всегда, если через вещество проходит волна. Вопрос не в этом. Волна чего проходит вместе с электроном через фольгу?
По морю гуляют морские волны — они состоят из воды. Космос пронизывают электромагнитные волны — они представляют собой колебания электрического и магнитного полей. Из чего состоит волна электрона, если сам он неделим и не имеет внутренней структуры?
Прежде чем ответить на эти вопросы, поставим опыт с пучком электронов немного по-другому. Станем выпускать электроны по одному (как пули из винтовки) и каждый раз менять фотопластинку за фольгой. После проявления всех фотопластинок мы обнаружим на каждой из них точку — след от упавшего электрона. (Уже один этот факт, если бы не было других доказательств, легко убеждает нас в том, что электрон — все-таки частица.) На первый взгляд черные точки на пластинках расположены совершенно беспорядочно, и, конечно, ни одна из точек ничем не напоминает дифракционную картину. Но если мы сложим все пластинки в одну стопку и посмотрим ее на просвет, то с удивлением обнаружим все те же дифракционные кольца. Стало быть, черные следы от электронов расположены на пластинках не так уж беспорядочно, как может показаться вначале.
Этот простой опыт настолько прост, что может даже обидеть некоторых читателей своей тривиальностью. Однако в свое время именно он убедил последних противников квантовой механики. Конечно, вовсе не обязательно для каждого электрона брать отдельную пластинку, вполне достаточно одной пластинки-мишени, только по-прежнему надо пускать электроны-пули поодиночке.
Как и прежде, мы не можем заранее предсказать, в какую точку пластинки попадет каждый следующий электрон. Это случайное событие. Однако если мы выпустим достаточно много электронов, то получим закономерную дифракционную картину.
С такими явлениями мы уже сталкивались при игре в «орел-решку», при бросании кости, при стрельбе в тире. Отмеченная аналогия приводит к естественному предположению: процесс рассеяния электронов подчиняется законам теории вероятностей. При дальнейшем размышлении и после знакомства с идеями Макса Борна эта догадка сменяется уверенностью.
ВОЛНЫ ВЕРОЯТНОСТИ
Макс Борн (1882–1970) преподавал физику в признанном центре немецкой науки — в Геттингене. Он пристально следил за развитием теории атома и был одним из первых, кто придал квантовым идеям Гейзенберга строгую математическую форму. В начале 1927 года он заинтересовался опытами по дифракции электронов.
Само по себе это явление после работ де Бройля уже не казалось удивительным. Любой физик, взглянув на дифракционную картину, мог бы теперь объяснить ее появление с помощью гипотезы о «волнах материи». Более того, по формуле де Бройля λ = h/m v; он мог вычислить длину этих «волн материи» и на опыте убедиться в правильности своих вычислений. Однако по-прежнему никто не мог объяснить, что он разумеет под словами «волны материи». Пульсацию электрона-шарика? Колебания какого-то эфира? Или вибрацию чего-либо еще более гипотетического? То есть насколько материальны сами «волны материи».
Летом 1927 года Макс Борн предположил: «волны материи» — это просто «волны вероятности», которые описывают вероятное поведение отдельного электрона, например вероятность его попадания в определенную точку фотопластинки.
Всякая новая и глубокая идея не имеет логических оснований, хотя нестрогие аналогии, которые к ней привели, можно проследить почти всегда. Поэтому вместо того чтобы доказывать правоту Борна (это невозможно), попытаемся почувствовать естественность его гипотезы. Обратимся снова к игре в «орел-решку» и вспомним причины, которые вынудили нас тогда применить теорию вероятностей. Их три:
полная независимость отдельных бросаний монеты;