При изучении аэродинамических сил, действующих на самолет в полете, приходится измерять не атмосферное давление, а разность между двумя давлениями, из которых одно, скажем, равно атмосферному, а другое больше или меньше атмосферного. Для этой цели служит особый прибор — манометр. Принцип его действия такой же, как и барометра. Манометр изображен на рис. 6.
Рис. 6. Ртутный манометр. Разность уровней (Д) показывает разность давлений воздуха (В) на поверхность ртути (Р) в коленах трубки.
На поверхность ртути в обоих коленах трубки действует одинаковое давление — атмосферное; поэтому ртуть стоит в них на одном уровне. Если же одно колено, скажем, левое, соединить с пространством, в котором давление меньше атмосферного, то уровень ртути в этом колене повысится.
Столбик ртути между уровнями ртути в коленах трубки и покажет разность давлений в миллиметрах ртутного столба.
Аэродинамические силы, действующие на тело при его движении в воздухе, зависят только от его скорости относительно воздуха. Поэтому движется ли тело, а воз-дух неподвижен или, наоборот, тело неподвижно, а движется воздух, — суть дела не меняется. Как в первом, так и во втором случае мы вправе говорить о воздушном потоке, набегающем на тело. Поэтому можно представить, что самолет, летящий, например, со скоростью 200 километров в час (рис. 7, а), неподвижен, а на него набегает поток воздуха, с той же скоростью 200 километров в час (рис. 7, б)[7].
Рис. 7. Скорость самолета относительно окружающего его воздуха можно представить как скорость воздуха, набегающего на самолет.
Следовательно, явления, возникающие при движении тела в воздухе, можно изучать двумя способами: или двигая тело в неподвижном воздухе, или обдувая воздухом неподвижное тело.
Сейчас применяются оба способа, но второй более удобен и им чаще пользуются.
Раньше некоторые ученые считали второй способ ошибочным, но Н. Е. Жуковский показал его правильность. Этот способ очень удобен при опытах в так называемых аэродинамических трубах.
Аэродинамической трубой называется сооружение, которое позволяет создавать искусственный поток воздуха. Скорость воздушного потока, в зависимости от конструкции трубы, может быть очень большой. Простейшая аэродинамическая труба изображена на рис. 8.
Рис. 8. Схема аэродинамической трубы: 1 — решетка, спрямляющая воздушный поток, 2 — рабочая часть трубы, 3 — вентилятор, 4 — электромотор.
Вот как она устроена и работает. Оба конца трубы открыты, и в одном из них установлен большой вентилятор, вращаемый электромотором. При работе вентилятора в трубе создается воздушный поток. В самой узкой — рабочей— части трубы устанавливают для испытания модель самолета или крыла. Если воздушный поток «подкрасить» дымом, то через окно в трубе можно наблюдать, как воздух обтекает модель, и даже сфотографировать картину обтекания. С помощью специальных приборов можно измерять силы, возникающие при действии воздушного потока на модель.
В аэродинамической трубе, если вентилятор вращается равномерно, воздушный поток получается, как говорят, установившимся.
Если самолет летит с постоянной скоростью, то полет тоже называют установившимся.
ДВА ЗАКОНА АЭРОДИНАМИКИ
Течение воздуха и силы, возникающие при действии воздушного потока на тела, изучает наука аэродинамика. Это родная сестра гидродинамики, изучающей, течение жидкостей («гидр» — вода). Важнейшие законы гидродинамики были сформулированы учеными Эйлером и Д. Бернулли — современниками Ломоносова. С развитием авиации выяснилось, что эти законы в общем справедливы и для воздуха, то есть являются и законами аэродинамики. Они вытекают из основных законов естествознания: сохраняемости массы и энергии.
Эйлер сформулировал закон неразрывности течения жидкости.
Посмотрите на рис. 9, а.
Рис. 9. С уменьшением площади сечения струи скорость течения воды или воздуха возрастает, а давление падает.
На нем изображена схема прибора, состоящего из открытого резервуара и соединенной с ним трубки, которая имеет разные сечения. Если открыть оба крана так, чтобы уровень воды в резервуаре оставался неизменным, то течение воды по трубке будет установившимся: в любом месте трубки вода ни накапливается, ни убывает (иначе где-то образовался бы разрыв течения). Поэтому за одну секунду из трубки вытекает столько же воды, сколько в нее притекает из резервуара. Значит, через разные сечения трубки (А, Б и В) за одну секунду протекает одинаковая масса воды. А это может быть, очевидно, только в том случае, если через эти сечения вода течет с различной скоростью. Чем меньше сечение, тем больше скорость воды. Иначе за одну секунду через узкое сечение «не успеет» пройти такая же масса воды, какая проходит за одну секунду через широкое сечение.
7
Скорость принято изображать стрелкой, длина которой показывает в масштабе величину скорости.