Выбрать главу

В этом и состоит закон неразрывности течения жидкости. В справедливости его можно убедиться, наблюдая течение реки. Там, где ее русло суживается и мелеет, вода течет всегда быстрее.

Этот закон справедлив и для течения воздуха, когда скорость не превышает 400–500 км/час и воздух можно считать несжимаемым.

Теперь познакомимся со вторым важнейшим законом аэрогидродинамики, который был сформулирован ученым Бернулли. Воспользуемся опять же прибором, который изображен на рис. 9, а.

Вы видите, что к трубке переменного сечения присоединены вертикальные трубочки с открытыми концами. Эти трубочки играют роль манометров. Когда краны закрыты и вода не течет по трубке, то в манометрах она стоит на том же уровне, что и в резервуаре (как во всяких сообщающихся сосудах). Но как только вода потечет по трубке, уровень воды в манометрах понизится.

Это доказывает, что если вода течет, то давление ее на стенки трубки меньше, чем когда она находится в покое. Кроме того, оказывается, что уровень воды больше всего понизится в том манометре, который присоединен к самому узкому сечению, а меньше всего — в манометре, присоединенном к самому широкому сечению.

Таким образом, когда скорость воды, то есть ее кинетическая энергия, увеличивается, давление в струе (потенциальная энергия) уменьшается[8]. В этом и заключается смысл закона Бернулли.

То же самое можно наблюдать и при течении воздуха по трубке переменного сечения (рис. 9, б). Манометры и здесь покажут, что давление уменьшается при сужении струи, то есть при увеличении скорости течения воздуха.

В справедливости закона Бернулли легко убедиться и на более простом опыте.

Возьмите два листа писчей бумаги, держа их параллельно (рис. 10, а), дуньте в промежуток между ними.

Рис. 10. Если дуть в промежуток между двумя листами бумаги, то они сблизятся, так как давление в струе меньше, чем с внешних сторон листов.

Казалось бы, что струя воздуха подействует как клин и поэтому листы разойдутся. Произойдет же как раз обратное: листы сблизятся (рис. 10, б). Дело в том, что с внешних сторон давление воздуха на листы равно атмосферному, в промежутке же между ними — в струе воздуха — давление будет немного меньше атмосферного; разность давлений и заставляет листы сближаться.

Теперь, когда вы познакомились с важнейшими законами аэродинамики, вы поймете возникновение аэродинамических сил и, в частности, подъемной силы крыла, поддерживающей самолет в воздухе.

АЭРОДИНАМИЧЕСКИЕ СИЛЫ

На самолет в полете действуют аэродинамические силы. Покажем сначала на простых примерах, как они возникают.

Прежде всего, что такое аэродинамическая сила?

Когда при полном безветрии вы быстро едете на велосипеде, встречный воздух стремится затормозить ваше движение. А если вы стоите неподвижно и на вас дует сильный ветер, то воздух стремится сдвинуть вас с места. В обоих случаях это воздействие воздушного потока на тело и называют аэродинамической силой, или силой сопротивления воздуха.

Аэродинамическая сила получается тем большей, чем больше поперечные размеры тела и плотность воздуха, и особенно сильно она возрастает с увеличением скорости движения (или скорости потока). Кроме того, величина аэродинамической силы зависит еще от формы тела и от положения его в воздушном потоке. То и другое имеет огромное значение для полета.

Как же возникает аэродинамическая сила?

На рис. 11, а изображена схема обтекания воздухом круглой пластины (диска), поставленной перпендикулярно к потоку. Посмотрите на нее внимательно.

Рис. 11. Возникновение аэродинамической силы Р при симметричном обтекании: а) пластины и б) хорошо обтекаемого тела.

Струйки воздуха давят на пластину, так как она является для них препятствием. Перед пластиной получается повышенное давление (обозначено знаками плюс).

Огибая пластину, струйки сжимаются и поэтому, согласно закону неразрывности, скорость их возрастает. В силу инерции они стремятся двигаться прямолинейно и отрываются от пластины. По этой причине позади нее получается разрежение, то есть пониженное давление воздуха (обозначено знаками минус). Некоторые струйки врываются в это разреженное пространство и образуют вихри, которые потом постепенно исчезают.

вернуться

8

Кинетическая энергия — это энергия движения тела, например, энергия текучей воды, воздуха, падающего груза, раскручивающейся пружины и т. д. Потенциальная энергия — это энергия положения тела, например, энергия запруженной реки, сжатого газа, закрученной пружины и т. д. Кинетическая энергия тела может переходить в потенциальную и наоборот, но сумма их остается неизменной.