Выбрать главу

Около 1800 года Томас Юнг (1773–1829) пришел к выводу, что, если пользоваться не абсолютными значениями сил и смещений в конструкциях, а напряжениями и деформациями, то закон Гука можно записать в следующем виде: Напряжение / Деформация = σ/ε константа.

Юнг заключил, что эта константа является неотъемлемой характеристикой каждого химического вещества и представляет его жесткость. Мы называем эту константу упругости модулем Юнга и обозначаем буквой E. Итак, E = σ/ε

Следовательно, Е описывает жесткость материала как такового. Жесткость любого заданного объекта зависит не только от модуля Юнга материала, но и от геометрической формы объекта. Между прочим, считают, что Юнг "был человеком великой учености, но, к сожалению, он никогда даже не подозревал, что возможности заурядного ума ограничены"[10]. Его идея о модуле упругости была изложена в не очень понятной статье, опубликованной в 1807 году. К этому времени Юнгу запретили читать лекции в Королевском институте, так как считали, что он слишком далек от практики. Так и случилось, что одно из самых распространенных ныне и полезных технических понятий не было принято и внедрено в инженерную практику при жизни автора.

Громадная важность модуля упругости для техники объясняется двумя причинами. Во-первых, нам нужно точно знать возникающие под нагрузками смещения как в конструкции в целом, так и в различных ее частях. Разнообразие конструкций огромно - мосты, самолеты, коленчатые валы и т.д. Посмотрите, например, на деформированное крыло самолета (рис. 5). Под действием рабочих нагрузок взаимодействие деталей в конструкции не должно нарушаться[11]. В таких расчетах нам в первую очередь нужны величины Е.

Рис. 5. Самолет, в котором деформация лонжеронов крыла составляет 1,6% (радиус кривизны балки = Толщина / [2xДеформация])

Во-вторых, хотя неспециалисту и позволено думать, что жесткости всех конструкционных материалов практически одинаковы и говорить "Отлично, это вполне жестко! Не видно никаких смещений", такие суждения не соответствуют действительному положению вещей. Нам необходимо знать модули упругости различных материалов (стали, древесины и т.д.) не только для того, чтобы рассчитать деформации конструкции, но и для того, что бы деформации ее отдельных элементов были согласованными - тогда и напряжения между этими элементами будут распределяться так, как мы хотели этого, проектируя конструкцию. Определяя модуль Юнга, мы разделили напряжение на безразмерное число - деформацию, следовательно, модуль должен иметь размерность напряжения (кг/мм2, Н/м2 и т.п.). Если деформация равна 1 (100%), то напряжение оказывается равным модулю упругости. Стало быть, модуль упругости можно считать таким напряжением, которое удваивает длину упругого образца (конечно, если он прежде не разрушится). Легко себе представить, что величина модуля упругости должна быть большой, обычно она по крайней мере в 100 раз больше разрушающего напряжения: ведь мы упоминали уже, что материалы, как правило, разрушаются, когда их упругая деформация не превышает 1%. Модуль Юнга для стали, например, составляет около 20000 кг/мм2.

Как мы уже говорили, величина E может сильно из меняться от одного вещества к другому. Ниже приведены величины модуля для некоторых материалов[12].

Материал / Е, кг/мм2

Резина / 0,00007x104 (т.е. 0,7)

Неармированные пластики / 0,015x104

Органические молекулярные кристаллы, фталоцианин / 0,015x104

Древесина / 0,15x104

Кость / 0,3x104

Магний / 0,4x104

Обычное стекло / 0,7x104

Алюминий / 0,8x104

Сталь / 2x104

Окись алюминия (сапфир) / 4x104

Алмаз / 12x104

Таким образом, модуль самого жесткого из твердых тел (алмаза) почти в 200 000 раз больше модуля резины, тоже твердого тела. У резин модуль упругости очень мал, потому что резина состоит из длинных гибких молекулярных цепочек, которые в ненагруженном материале изгибаются, свиваются, сплетаются, словом, ведут себя подобно ниткам в спутанном клубке. Когда резину растягивают, изогнутые цепочки распрямляются, и совершенно очевидно, что необходимая для этого сила будет намного меньше той, которая потребовалась бы, чтобы растянуть пучок нитей, вытянутых в одном направлении. Совершенно иная картина наблюдается в кристалле. Прикладывая к нему силу, мы действуем непосредственно на межатомные связи, и единственная причина большой разницы в величине Е для разных кристаллов заключена в различной жесткости самих химических связей. Наклон прямого участка кривой межатомного взаимодействия очень сильно зависит от энергии межатомной связи. Но общая форма кривой для всех кристаллов одинакова.