Выбрать главу

Рис. 29. Распространение трещины Гриффитса. С распространением трещины материал в заштрихованных областях разгружается, освобождая упругую энергию.

На другой чаше наших энергетических весов расположилась поверхностная энергия 2Gl, которая необходима для образования двух новых поверхностей. Очевидно, эта энергия пропорциональна первой степени длины (или глубины) трещины. Величины поверхностной энергии двухмикронной и одномикронной трещин отличаются лишь в 2 раза, в то время как величины освобожденной энергии деформации - в 4 раза. Последствия такого взвешивания достаточно ясны. Мелкая трещина для своего роста должна больше потреблять поверхностной энергии, чем производить свободной энергии вследствие релаксации напряжений. Эти условия невыгодны для роста трещины. Однако, если исходная трещина достаточно велика, картина изменяется на противоположную: с ростом размеров величина освобожденной энергии увеличивается быстрее, она ведь зависит от квадрата длины трещины. Получается, что, если длина трещины превышает некоторую “критическую длину Гриффитса”, трещина производит больше энергии, чем потребляет. Тогда она может с громадной скоростью рвануться вперед, и процесс этот будет подобен взрыву. Для каждой величины напряжения в данном материале существует своя критическая длина Гриффитса. Для теоретически максимальной величины напряжения (теоретической прочности) критическая длина бесконечно мала, для материала, свободного от напряжений, она бесконечно велика - иного мы и не должны были ожидать. К сожалению, для тех напряжений, с которыми нам приходится обычно иметь дело, критическая длина трещины, как правило, очень мала, порядка нескольких микрон, и, конечно, она уменьшается, когда мы пытаемся увеличить напряжение. В этом заключается одна из трудностей, связанных с получением более прочных материалов.

Итак, при обычных уровнях нагружений все трещины, за исключением самых мелких, имеют энергетический стимул к росту. Весь вопрос теперь в том, могут ли они расти. Иными словами, существует ли соответствующий механизм роста, то есть существует ли способ для реализации имеющейся энергетической выгоды, или преобразования одной формы энергии в другую? Гриффитсов баланс энергии, энергетическая выгода распространения трещины, длина которой превышает некоторую критическую величину, - явления совершенно общие для всех упругих тел. Но вот механизм преобразования энергии как раз и отличает вязкие материалы от хрупких.

Этим механизмом является концентрация напряжений. Как мы видели в главе 3, концентрация напряжений на кончике трещины выражается приближенно формулой

K= 2(l/R)1/2,

где l - длина трещины, идущей с поверхности, или полудлина внутренней эллиптической трещины, R - радиус ее кончика.

В типичном хрупком материале радиус кончика трещины R остается постоянным, он не зависит от длины трещины. Поэтому с ростом трещины концентрация напряжений становится опаснее. На практике R имеет величину, сравнимую с атомными размерами. Пусть R, скажем, 1 ангстрем. Тогда у кончика трещины длиной около микрона (10000 А) напряжение, равное теоретической прочности, появится уже при очень умеренных средних по объему напряжениях. А такого размера трещина обычно соответствует гриффитсовой критической длине. Следовательно, трещина может расти, начиная примерно с этой длины, причем, конечно, момент начала роста сильно зависит от приложенной нагрузки.