Еще удивительнее то, как мало изучены механические свойства биологических материалов. Пожалуй, здесь играет психологический момент. Очень многие становятся биологами или медиками просто в результате реакции протеста против механико-математических дисциплин. А техника, наоборот, сейчас переживает тот период, когда природные материалы обычно бракуются. Металлы считаются более “важными”, чем древесина, которая едва ли принимается всерьез как конструкционный материал.
Целлюлоза, главная составная часть древесины, тростника, бамбука и всех растительных волокон, - очень вязкая. Биты для крикета делаются из ивы, молотки для игры в поло - из вяза, мячи для поло - из бамбуковых корней, ткацкие челноки - из персидской хурмы. Самолеты в свое время делали деревянными, планеры остаются деревянными до сих пор. Деревянные суда считаются более пригодными для ледовых условий, чем стальные. Целлюлоза не может считаться непрочной или хрупкой, хотя химически она представляет собой сахар, построенный из связанных вместе молекул глюкозы. Все кристаллические сахара очень хрупки, сахар хрупок и в стеклообразном виде (вспомните ириску).
Материалом костей и зубов служат довольно простые неорганические соединения, которые в своей обычной кристаллической и стеклообразной формах также очень хрупки. Конечно, можно сломать и кость, и зуб, но это случается сравнительно редко. Особенного восхищения заслуживают зубы, которые могут (при соответствующем уходе) разгрызать орехи в течение примерно сорока лет. Даже архисовременные зубные цементы несравненно слабее и более хрупки, чем материал зубов.
(обратно)Поверхность раздела как тормоз для трещин
В вопросе о вязкости армированных пластиков, среди которых наиболее известны стеклопластики, существует интересный парадокс. Стеклопластик содержит множество тонких стеклянных волокон, склеенных смолой воедино. Стекловолокно не отличается от обычного стекла ни физически, ни химически. Как мы уже видели, стекла катастрофически хрупки; так же ведут себя и волокна из стекла. Более того, смола, которая используется как связующая матрица в стеклопластиках, также достаточно хрупка; может быть, почти в такой степени, как стекло. Однако, когда оба этих компонента объединены вместе, получается материал, который производится в больших количествах главным образом благодаря его вязкости.
Не так давно мы с Дж. Куком решили разобраться в этом явлении количественно. В материаловедении многие задачи связаны с математическими трудностями, теоретически разрешимыми, но требующими слишком трудоемкой вычислительной работы. К таким задачам относится в какой-то мере и расчет распределения напряжений вокруг трещины. Но мы должны знать некоторые особенности картины напряжений вокруг трещины, если хотим предугадать, как поведет себя трещина, столкнувшись на своем пути с какой-либо неоднородностью. Ведь стеклопластик - материал явно неоднородный, особенно интересная неоднородность возникает на границе раздела между волокном и смолой.
В наше время ЭВМ меняют все представления о вычислительных трудностях. Концентрация напряжений у кончика трещины была впервые вычислена Инглисом в 1913 году. Мы уже говорили об этом, его результаты можно считать классикой, они абсолютно верны. С тех пор целый ряд ученых, более способных, чем мы, работали над этой проблемой. Но дьявольски громоздкий математический аппарат одних заставлял предполагать, что кончик трещины бесконечно остер, то есть имеет нулевой радиус; тех же, кто считался с конечным радиусом головки трещины, та же самая математика принуждала использовать очень приближенные методы или же определять картину напряженного состояния только в какой-то ограниченной области. Предположение о бесконечно острой трещине ведет к бесконечно большим напряжениям, что, очевидно, лишено реального смысла и не помогает в решении проблемы разрушения[30].
Приближенные методы, использовавшиеся для случая конечного радиуса головки, не давали достаточно полного представления о том, что делается у самого кончика трещины, то есть там, где идет разрушение.
Как бы то ни было, с электронно-вычислительной машиной или без оной, я, вероятно, не смог бы управиться со всей этой математикой, но Куку нравятся такого рода упражнения, и, использовав вычислительную машину “Меркурий”, он сумел определить напряжения очень близко к кончику трещины с конечным радиусом.
Общая картина напоминает картину, показанную на рис. 18. Немного обобщая ее, мы могли бы изобразить траектории напряжений, то есть направления, по которым напряжения передаются с одной атомной связи на другую, как это сделано на рис. 30. Эта схема поможет нам понять детали картины напряжений, полученной Куком.