Ангстрем (А) - 1/10000 мкм, или 1/100000000 см. Эта единица пользуется уважением тех, кто работает с электронным микроскопом, ее применяют для измерения атомов и молекул. С помощью современного электронного микроскопа можно рассмотреть (обычно в виде неясных пятен) частицы размером около 5 А. Это примерно в тысячу раз меньше того, что можно увидеть в лучшем оптическом микроскопе. Но и в этом случае разрешение сильно зависит от условий эксперимента.
Вероятно, здесь следует немного поговорить об атоме. Атомы - это то, из чего построены все вещества. Сами атомы состоят из очень малых и тяжелых ядер, окруженных облаком обращающихся вокруг них электронов, которые являются волнами, частицами или отрицательными зарядами электричества. Электроны несравненно меньше ядер атомов. Массы и размеры атомов различных веществ могут быть очень разными. Атомы можно представить себе в виде шариков с негладкой поверхностью диаметром, грубо говоря, около 2 А. По обыденным понятиям, это невообразимо малый размер, мы никогда не сможем увидеть отдельный атом с помощью обычного видимого света, хотя в массе своей атомы, конечно, являются перед нами в виде любого тела.
Здесь полезно напомнить, что наименьшая частица, которую можно видеть невооруженным глазом, содержит примерно 500000 атомов в поперечнике, а с помощью оптического микроскопа нам удается рассмотреть частичку с 2000 атомов в поперечнике. Электронный микроскоп позволяет увидеть расположение атомов в кристалле, которое напоминает построение солдат на параде; с помощью устройства, называемого ионным проектором, можно рассмотреть даже отдельные атомы - по крайней мере некие их туманные очертания. Однако даже при значительно лучшей разрешающей способности микроскопа (а со временем таковая, возможно, и будет достигнута) вряд ли нам удастся увидеть что-нибудь очень конкретное.
(обратно) (обратно)Часть I. Упругость и теория прочности
Глава 1
Напряжения и деформации, или почему мы не проваливаемся сквозь пол
Он имел обыкновение каждый вечер втягивать Вана в философскую дискуссию и в этих спорах всегда подчеркивал разницу между системой Ка-пина, в которой Земля висит на мощных канатах, и системой Тай-у, считавшего, что Земля опирается на громадный бамбуковый столб. Самобытный и проницательный ум Аш-шу уже давно обнаружил слабость обеих теорий в самой их основе.
Kaй Лун расстилает свою циновку Эрнст БрамаМы действительно не проваливаемся сквозь пол, и это для нас настолько обычно, что мы над этим никогда не задумываемся. Но более общий вопрос, почему любое твердое тело вообще способно сопротивляться приложенной к нему нагрузке, издавна занимал умы ученых. Ответ на него представляет собой наглядный пример того, как без применения изощренных приборов может быть теоретически решена научная проблема (исключая, конечно, ее молекулярный аспект). Это отнюдь не говорит о бесхитростности предмета. Ведь недаром первый существенный вклад в решение проблемы внесли такие выдающиеся умы, как Галилей (1564–1642) и Гук (1635–1702). Нужно сказать, что именно они впервые четко сформулировали задачу.
Правда, эта задача оказалась за пределами возможностей XVII века. Более того, на протяжении еще двухсот лет не было достаточно полного представления о том, что же на самом деле происходит в конструкциях; даже в XIX веке круг людей, понимавших что-то в этой области, ограничивался несколькими не очень признанными в те времена теоретиками. Инженеры-практики все еще продолжали делать свои расчеты, что называется, на пальцах. Нужно было пройти долгий путь, полный сомнений и катастроф (вроде случая с мостом через реку Тэй[6]), чтобы они убедились в пользе обоснованных расчетов на прочность[7]. Вместе с тем обнаружилось, что правильный расчет может удешевить конструкцию, так как позволяет экономить материалы более безопасным путем. В наши дни суть разницы между квалифицированным инженером, с одной стороны, и слесарем или просто самоучкой-любителем - с другой, заключается не столько в изобретательности или степени мастерства, сколько в теоретической подготовке.